请考虑以下几点:
当用 GEE 拟合时,geepack
我们会收到一个模型,我们可以predict
使用新值,但基础 R 不支持 GEE 模型来计算置信区间。要获得置信区间,我们可以使用emmeans::emmeans()
.
如果模型中的变量是分类的和连续的,我就会遇到问题。
当用我估计边际平均值时,emmeans::emmeans()
我发现边际平均值是用整体数据而不是每组数据计算的。
问题:如何从 R 中的 GEE 模型获得每组的估计平均值,包括置信区间?
最小的可重现示例:
数据
library("dplyr")
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library("emmeans")
#> Warning: package 'emmeans' was built under R version 3.5.2
library("geepack")
# Adding a grouping variable
pigs.group <- emmeans::pigs %>% mutate(group = c(rep("a", 20), rep("b", 9)))
拟合模型
# Fitting the model
fit <- geepack::geeglm(conc ~ as.numeric(percent) + factor(group),
id = source, data = pigs.group)
# Model results
fit
#>
#> Call:
#> geepack::geeglm(formula = conc ~ as.numeric(percent) + factor(group),
#> data = pigs.group, id = source)
#>
#> Coefficients:
#> (Intercept) as.numeric(percent) factor(group)b
#> 20.498948 1.049322 10.703857
#>
#> Degrees of Freedom: 29 Total (i.e. Null); 26 Residual
#>
#> Scale Link: identity
#> Estimated Scale Parameters: [1] 36.67949
#>
#> Correlation: Structure = independence
#> Number of clusters: 3 Maximum cluster size: 10
emmeans::emmeans()
用于计算边际均值和 LCL/UCL 。但是,两组的组均值percent
均为 12.9。这是观察到的整体平均值,percent
而不是组平均值。
# Calculating marginal means per group.
# Note that 'percent' is the same for both groups
emmeans::emmeans(fit, "percent", by = "group")
#> group = a:
#> percent emmean SE df asymp.LCL asymp.UCL
#> 12.9 34.1 3.252 Inf 27.7 40.4
#>
#> group = b:
#> percent emmean SE df asymp.LCL asymp.UCL
#> 12.9 44.8 0.327 Inf 44.1 45.4
#>
#> Covariance estimate used: vbeta
#> Confidence level used: 0.95
# Creating new data with acutal means per group
new.dat <- pigs.group %>%
group_by(group) %>%
summarise(percent = mean(percent))
# These are the actual group means
new.dat
#> # A tibble: 2 x 2
#> group percent
#> <chr> <dbl>
#> 1 a 13.2
#> 2 b 12.3
预测predict
也返回每组的其他估计均值,但无法估计基数 R 中的 GEE 的置信区间。
# Prediction with new data
# These should be the marginal means but how to get the confidence interval?
predict(fit, newdata = new.dat)
#> 1 2
#> 34.35000 44.14444
由reprex 包(v0.2.1)于 2019 年 2 月 8 日创建