1

这是我的数据框(请复制并粘贴以重现):

Control <- replicate(2, c("112", "113", "116", "118", "127", "131", "134", "135", "136", "138", "143", "148", "149", "152", "153", "155", "162", "163"))
EPD <- replicate(2, c("101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "114", "115", "117", "119", "120", "122", "124", "125", "126", "128", "130", "133", "137", "139", "140", "141", "142", "144", "145", "147"))
Subject <- c(Control, EPD)
Group <- c(replicate(36, "Control"), replicate(60, "Patient"))
Side <- c(replicate(18, "L"), replicate(18, "R"), replicate(30, "L"), replicate(30, "R"))
Control_Volume_L <- c(99, 119, 119, 146, 127, 96, 100, 132, 103, 103, 107, 142, 140, 134, 117, 117, 133, 143)
Control_Volume_R <- c(93, 123, 114, 152, 122, 105, 98, 138, 111, 110, 115, 137, 142, 140, 124, 102, 153, 143)
EPD_Volume_L <- c(132, 115, 140, 102, 130, 131, 110, 124, 102, 111, 93, 92, 94, 104, 92, 115, 144, 118, 104, 132, 90, 102, 94, 112, 106, 105, 79, 114, 104, 108)
EPD_Volume_R <- c(136, 116, 143, 105, 136, 137, 103, 121, 105, 115, 97, 97, 93, 108, 91, 117, 147, 111, 97, 129, 85, 107, 91, 116, 113, 101, 75, 108, 95, 98)
Volume <- c(Control_Volume_L, Control_Volume_R, EPD_Volume_L, EPD_Volume_R)
Control_FA_L <- c(0.43, 0.39, 0.38, 0.58, 0.37, 0.5, 0.35, 0.36, 0.72, 0.38, 0.45, 0.30, 0.47, 0.30, 0.67, 0.34, 0.42, 0.29)
Control_FA_R <- c(0.36, 0.49, 0.55, 0.59, 0.33, 0.41, 0.32, 0.50, 0.59, 0.52, 0.32, 0.40, 0.49, 0.33, 0.46, 0.39, 0.37, 0.33)
EPD_FA_L <- c(0.25, 0.39, 0.36, 0.42, 0.21, 0.40, 0.43, 0.16, 0.31, 0.41, 0.39, 0.40, 0.35, 0.29, 0.31, 0.24, 0.39, 0.36, 0.54, 0.38, 0.34, 0.28, 0.42, 0.33, 0.40, 0.36, 0.42, 0.28, 0.40, 0.41)
EPD_FA_R <- c(0.26, 0.36, 0.36, 0.61, 0.22, 0.33, 0.36, 0.34, 0.35, 0.37, 0.39, 0.45, 0.30, 0.31, 0.50, 0.31, 0.29, 0.43, 0.41, 0.21, 0.38, 0.28, 0.66, 0.33, 0.50, 0.27, 0.46, 0.37, 0.26, 0.39)
FA <- c(Control_FA_L, Control_FA_R, EPD_FA_L, EPD_FA_R)

data <- data.frame(Subject, Group, Side, Volume, FA)

然后,我使用 nlme 包运行 FA 值的线性混合模型:

library(nlme)
lmm <- lme(FA ~ Group + Side + Volume, ~ 1|Subject, data = data)
summary(lmm)

因为“边”不是一个重要因素,所以它从模型中删除:

lmm <- lme(FA ~ Group + Volume, ~ 1|Subject, data = data)
summary(lmm) 

我想对“组”因素(两个级别:“控制”和“患者”)进行事后分析。通常,我会运行以下代码来使用 multcomp 包对具有两个以上水平的因素执行事后分析:

library(multcomp)
summary(glht(lmm, linfct=mcp(Group ="Tukey")))

我不相信 Tukey 的多重比较事后检验在这种情况下是合适的,因为我们的因素只有两个水平。在这种情况下,合适的事后测试是什么?我想查看模型估计的“组”因子(“控制”和“患者”)的两个水平之间的差异。任何反馈将不胜感激!

4

1 回答 1

2

有几件事。首先,仅仅因为Side不重要并不一定是从模型中删除它的理由。如果有理论上的理由放弃它(例如,如果它没有理由与结果相关),或者如果测量/数据本身存在问题,那么放弃它可能更有效。

其次,由于Group它是一个二进制变量,因此您不需要进行任何事后比较。输出中的系数Group将代表对照组和患者组之间的平均差异,同时控制模型中的所有其他变量。因此,在Side包含模型的输出中,患者的 FA 评分平均比对照组低 0.08 个单位。如果这个指标本身是有意义的,那么你可以这样报告它。如果没有,您可能希望对其进行标准化。

希望这可以帮助。

于 2019-02-01T23:30:44.510 回答