嗨,我正在尝试做我的第一个统一 ml-agents ai。之前,当我想训练我的 AI 时,我正在写作
mlagents-learn 配置/trainer_config.yaml --run-id=Taxi-1 --train
在终端,但人工智能在 50 000 步后停止了训练。然后,我尝试再次训练它,与另一个
mlagents-learn 配置/trainer_config.yaml --run-id=Taxi-1 --train
然后,我看到如果您希望它不重新开始整个训练并继续训练您以前的模型,则必须将 --load 添加到命令中。然而,当我写
mlagents-learn 配置/trainer_config.yaml --load --run-id=Taxi-1 --train
它只做一步然后停止。这是它在终端中写入的内容:
INFO:mlagents.trainers:{'--curriculum': 'None',
'--docker-target-name': 'None',
'--env': 'None',
'--help': False,
'--keep-checkpoints': '5',
'--lesson': '0',
'--load': True,
'--no-graphics': False,
'--num-runs': '1',
'--run-id': 'Taxi-1',
'--save-freq': '50000',
'--seed': '-1',
'--slow': False,
'--train': True,
'--worker-id': '0',
'<trainer-config-path>': 'config/trainer_config.yaml'}
INFO:mlagents.envs:Start training by pressing the Play button in the
Unity Editor.
INFO:mlagents.envs:
'Academy' started successfully!
Unity Academy name: Academy
Number of Brains: 2
Number of Training Brains : 1
Reset Parameters :
Unity brain name: CarLBrain
Number of Visual Observations (per agent): 0
Vector Observation space size (per agent): 12
Number of stacked Vector Observation: 6
Vector Action space type: continuous
Vector Action space size (per agent): [2]
Vector Action descriptions: ,
Unity brain name: CarPBrain
Number of Visual Observations (per agent): 0
Vector Observation space size (per agent): 12
Number of stacked Vector Observation: 6
Vector Action space type: discrete
Vector Action space size (per agent): [10, 10]
Vector Action descriptions: ,
INFO:mlagents.trainers:Loading Model for brain CarLBrain
INFO:tensorflow:Restoring parameters from ./models/Taxi-1-
0/CarLBrain/model-50001.cptk
INFO:mlagents.envs:Hyperparameters for the PPO Trainer of brain
CarLBrain:
batch_size: 1024
beta: 0.005
buffer_size: 10240
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 0.0003
max_steps: 5.0e4
normalize: False
num_epoch: 3
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: False
summary_path: ./summaries/Taxi-1-0_CarLBrain
memory_size: 256
use_curiosity: False
curiosity_strength: 0.01
curiosity_enc_size: 128
model_path: ./models/Taxi-1-0/CarLBrain
INFO:mlagents.envs:Saved Model
INFO:mlagents.trainers:List of nodes to export for brain :CarLBrain
INFO:mlagents.trainers: is_continuous_control
INFO:mlagents.trainers: version_number
INFO:mlagents.trainers: memory_size
INFO:mlagents.trainers: action_output_shape
INFO:mlagents.trainers: action
INFO:mlagents.trainers: action_probs
INFO:mlagents.trainers: value_estimate
INFO:tensorflow:Restoring parameters from ./models/Taxi-1-
0/CarLBrain/model-50002.cptk
INFO:tensorflow:Froze 17 variables.
Converted 17 variables to const ops.
你知道我怎样才能继续训练超过 50 000 步吗?谢谢您的帮助!不要犹豫,要求任何澄清。