我正在构建一个最终将被其他用户使用的回归模型。该模型通过使用多个大气变量(如气温、湿度、太阳辐射、风等)来预测花温。
经过大量的涂鸦,我注意到通过 SKlearn 进行的二次多项式回归为我的训练和测试数据提供了良好的 RMSE。但是,由于存在超过 36 个系数共线性,并且根据对此帖子的评论:https ://stats.stackexchange.com/questions/29781/when-conducting-multiple-regression-when-should-you-center-your -predictor-varia,共线性会干扰 beta,所以我得到的 RMSE 是不合适的。
我听说也许我应该标准化以消除共线性或使用正交分解,但我不知道哪个会更好。在任何情况下,我都尝试标准化我的 x 变量,当我为训练和测试数据计算 RMSE 时,我得到的训练数据的 RMSE 相同,但测试数据的 RMSE 不同。
这是代码:
import pandas as pd
import numpy as np
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn import metrics
def OpenFile(ThePath):
path = Location + ThePath
Prepared_df = pd.read_csv(path, sep=',', encoding='utf-8')
Prepared_df = Prepared_df.loc[:, ~Prepared_df.columns.str.contains('^Unnamed')]
return(Prepared_df)
def EvaluateRegression(Test_data,Predict_data):
MAE = np.round(metrics.mean_absolute_error(Test_data, Predict_data),3)
MSE = np.round(metrics.mean_squared_error(Test_data, Predict_data),3)
RMSE = np.round(np.sqrt(metrics.mean_squared_error(Test_data, Predict_data)),3)
print('Mean absolute error :',MAE)
print('Mean square error :',MSE)
print('RMSE :',RMSE)
return MAE,MSE,RMSE
#Read files ------------------------------------------------------------------------------------------------------------
Location = 'C:\\Users\...'
#Training data
File_Station_day = 'Flower_Station_data_day.csv' #X training data
File_TD = 'Flower_Y_data_day.csv' #Y training data
Chosen_Air = OpenFile(File_Station_day)
Day_TC = OpenFile(File_TD)
#Testing data
File_Fluke_Station= 'Fluke_Station_data.csv' #X testing data
File_Fluke = 'Flower_Fluke_data.csv' #Y testing data
Chosen_Air_Fluke = OpenFile(File_Fluke)
Fluke_Station = OpenFile(File_Fluke_Station)
#Prepare data --------------------------------------------------------------------------------------------------------
y_train = Day_TC
y_test = Fluke_data
#Get the desired atmospheric variables
Air_cols = ['MAXTemp_data', 'MINTemp_data', 'Humidity', 'Precipitation', 'Pression', 'Arti_InSW', 'sin_time'] #Specify the desired atmospheriv variables
X_train = Chosen_Air[Air_cols]
X_test = Chosen_Air_Fluke[Air_cols]
#If not standardizing
poly = PolynomialFeatures(degree=2)
linear_poly = LinearRegression()
X_train_rdy = poly.fit_transform(X_train)
linear_poly.fit(X_train_rdy,y_train)
X_test_rdy = poly.fit_transform(X_test)
Input_model= linear_poly
print('Regression: For train')
MAE, MSE, RMSE = EvaluateRegression(y_train, Input_model.predict(X_train_rdy))
#For testing data
print('Regression: For test')
MAE, MSE, RMSE = EvaluateRegression(y_test, Input_model.predict(X_test_rdy))
#Output:
Regression: For train
Mean absolute error : 0.391
Mean square error : 0.256
RMSE : 0.506
Regression: For test
Mean absolute error : 0.652
Mean square error : 0.569
RMSE : 0.754
#If standardizing
std = StandardScaler()
X_train_std = pd.DataFrame(std.fit_transform(X_train),columns = Air_cols)
X_test_std = pd.DataFrame(std.fit_transform(X_test),columns = Air_cols)
poly = PolynomialFeatures(degree=2)
linear_poly_std = LinearRegression()
X_train_std_rdy = poly.fit_transform(X_train_std)
linear_poly_std.fit(X_train_std_rdy,y_train)
X_test_std_rdy = poly.fit_transform(X_test_std)
Input_model= linear_poly_std
print('Regression: For train')
MAE, MSE, RMSE = EvaluateRegression(y_train, Input_model.predict(X_train_std_rdy))
#For testing data
print('Regression: For test')
MAE, MSE, RMSE = EvaluateRegression(y_test, Input_model.predict(X_test_std_rdy))
#Output:
Regression: For train
Mean absolute error : 0.391
Mean square error : 0.256
RMSE : 0.506
Regression: For test
Mean absolute error : 10.901
Mean square error : 304.53
RMSE : 17.451
为什么我为标准化测试数据获得的 RMSE 与非标准化测试数据如此不同?也许我这样做的方式一点都不好?请让我知道我是否应该将文件附加到帖子中。
感谢您的时间!