昨天我试图完成 Udacity 的第 11 课,关于文本的矢量化。我检查了代码,一切似乎都很好——我接收了一些电子邮件,打开它们,删除一些签名词并将每封电子邮件的词干词返回到一个列表中。
这是循环1:
for name, from_person in [("sara", from_sara), ("chris", from_chris)]:
for path in from_person:
### only look at first 200 emails when developing
### once everything is working, remove this line to run over full dataset
# temp_counter += 1
if temp_counter < 200:
path = os.path.join('/xxx', path[:-1])
email = open(path, "r")
### use parseOutText to extract the text from the opened email
email_stemmed = parseOutText(email)
### use str.replace() to remove any instances of the words
### ["sara", "shackleton", "chris", "germani"]
email_stemmed.replace("sara","")
email_stemmed.replace("shackleton","")
email_stemmed.replace("chris","")
email_stemmed.replace("germani","")
### append the text to word_data
word_data.append(email_stemmed.replace('\n', ' ').strip())
### append a 0 to from_data if email is from Sara, and 1 if email is from Chris
if from_person == "sara":
from_data.append(0)
elif from_person == "chris":
from_data.append(1)
email.close()
这是循环2:
for name, from_person in [("sara", from_sara), ("chris", from_chris)]:
for path in from_person:
### only look at first 200 emails when developing
### once everything is working, remove this line to run over full dataset
# temp_counter += 1
if temp_counter < 200:
path = os.path.join('/xxx', path[:-1])
email = open(path, "r")
### use parseOutText to extract the text from the opened email
stemmed_email = parseOutText(email)
### use str.replace() to remove any instances of the words
### ["sara", "shackleton", "chris", "germani"]
signature_words = ["sara", "shackleton", "chris", "germani"]
for each_word in signature_words:
stemmed_email = stemmed_email.replace(each_word, '') #careful here, dont use another variable, I did and broke my head to solve it
### append the text to word_data
word_data.append(stemmed_email)
### append a 0 to from_data if email is from Sara, and 1 if email is from Chris
if name == "sara":
from_data.append(0)
else: # its chris
from_data.append(1)
email.close()
代码的下一部分按预期工作:
print("emails processed")
from_sara.close()
from_chris.close()
pickle.dump( word_data, open("/xxx/your_word_data.pkl", "wb") )
pickle.dump( from_data, open("xxx/your_email_authors.pkl", "wb") )
print("Answer to Lesson 11 quiz 19: ")
print(word_data[152])
### in Part 4, do TfIdf vectorization here
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction import stop_words
print("SKLearn has this many Stop Words: ")
print(len(stop_words.ENGLISH_STOP_WORDS))
vectorizer = TfidfVectorizer(stop_words="english", lowercase=True)
vectorizer.fit_transform(word_data)
feature_names = vectorizer.get_feature_names()
print('Number of different words: ')
print(len(feature_names))
但是当我用循环 1 计算单词总数时,我得到了错误的结果。当我使用循环 2 执行此操作时,我得到了正确的结果。
我看这段代码太久了,我看不出区别——我在循环 1 中做错了什么?
作为记录,我一直得到的错误答案是 38825。正确答案应该是 38757。
非常感谢您的帮助,善良的陌生人!