我正处于学习如何扩展的早期阶段ggplot2
。我想创建一个自定义geom
和关联的stat
. 我的出发点是小插图。此外,我还受益于this和this。我正在尝试制作一个模板来教自己,并希望能教给其他人。
主要问题:
在我的函数内部calculate_shadows()
,需要的参数params$anchor
是NULL
. 我怎样才能访问它?
下面描述的目标仅用于学习如何创建自定义stat
和geom
函数,这不是真正的目标:正如您从屏幕截图中看到的那样,我确实知道如何利用 的力量ggplot2
来制作图表。
将
geom
读取数据并为提供的变量("x", "y")
绘制(因为需要更好的词)shadows
:默认为水平线,min(x)--max(x)
默认y=0
为垂直线。如果提供了一个选项,这些“锚点”可以改变,例如,如果用户提供,水平线将在截距处绘制,而垂直线将在截距处绘制。用法:min(y)--max(y)
x=0
x = 35, y = 1
y = 1
x = 35
library(ggplot2) ggplot(data = mtcars, aes(x = mpg, y = wt)) + geom_point() + geom_shadows(x = 35, y = 1)
将
stat
读取数据,并且对于提供的变量("x", "y")
将shadows
根据 的值进行计算stat
。例如,通过传递stat = "identity"
,将为数据的最小值和最大值计算阴影(由 完成geom_shadows
)。但是通过传递stat = "quartile"
,将计算第一和第三四分位数的阴影。更一般地,可以传递一个类似stats::quantile
参数的函数args = list(probs = c(0.10, 0.90), type = 6)
,以使用第 10 和第 90 个百分位数以及类型 6 的分位数方法来计算阴影。用法:ggplot(data = mtcars, aes(x = mpg, y = wt)) + geom_point() + stat_shadows(stat = "quartile")
不幸的是,我对扩展的不熟悉使ggplot2
我远远没有达到我的目标。这些图是用geom_segment
. 基于上面引用的教程和讨论并检查现有的代码,例如stat-qq
or stat-smooth
,我已经为这个目标构建了一个基本架构。一定有很多错误,不胜感激。另外,请注意,这些方法中的任何一种都可以:geom_shadows(anchor = c(35, 1))
或geom_shadows(x = 35, y = 1)
.
现在这是我的努力。首先,geom-shadows.r
定义geom_shadows()
. 第二,stat-shadows.r
定义stat_shadows()
. 代码不能按原样工作。但如果我执行它的内容,它确实会产生所需的统计数据。为清楚起见,我删除了 中的大部分计算stat_shadows()
,例如四分位数,以专注于基本要素。布局中有什么明显的错误吗?
几何阴影.r
#' documentation ought to be here
geom_shadows <- function(
mapping = NULL,
data = NULL,
stat = "shadows",
position = "identity",
...,
anchor = list(x = 0, y = 0),
shadows = list("x", "y"),
type = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomShadows,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
anchor = anchor,
shadows = shadows,
type = type,
na.rm = na.rm,
...
)
)
}
GeomShadows <- ggproto("GeomShadows", Geom,
# set up the data, e.g. remove missing data
setup_data = function(data, params) {
data
},
# set up the parameters, e.g. supply warnings for incorrect input
setup_params = function(data, params) {
params
},
draw_group = function(data, panel_params, coord, anchor, shadows, type) {
# draw_group uses stats returned by compute_group
# set common aesthetics
geom_aes <- list(
alpha = data$alpha,
colour = data$color,
size = data$size,
linetype = data$linetype,
fill = alpha(data$fill, data$alpha),
group = data$group
)
# merge aesthetics with data calculated in setup_data
geom_stats <- new_data_frame(c(list(
x = c(data$x.xmin, data$y.xmin),
xend = c(data$x.xmax, data$y.xmax),
y = c(data$x.ymin, data$y.ymin),
yend = c(data$x.ymax, data$y.ymax),
alpha = c(data$alpha, data$alpha)
), geom_aes
), n = 2)
# turn the stats data into a GeomPath
geom_grob <- GeomSegment$draw_panel(unique(geom_stats),
panel_params, coord)
# pass the GeomPath to grobTree
ggname("geom_shadows", grobTree(geom_grob))
},
# set legend box styles
draw_key = draw_key_path,
# set default aesthetics
default_aes = aes(
colour = "blue",
fill = "red",
size = 1,
linetype = 1,
alpha = 1
)
)
stat-shadows.r
#' documentation ought to be here
stat_shadows <-
function(mapping = NULL,
data = NULL,
geom = "shadows",
position = "identity",
...,
# do I need to add the geom_shadows arguments here?
anchor = list(x = 0, y = 0),
shadows = list("x", "y"),
type = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
stat = StatShadows,
data = data,
mapping = mapping,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
# geom_shadows argument repeated here?
anchor = anchor,
shadows = shadows,
type = type,
na.rm = na.rm,
...
)
)
}
StatShadows <-
ggproto("StatShadows", Stat,
# do I need to repeat required_aes?
required_aes = c("x", "y"),
# set up the data, e.g. remove missing data
setup_data = function(data, params) {
data
},
# set up parameters, e.g. unpack from list
setup_params = function(data, params) {
params
},
# calculate shadows: returns data_frame with colnames: xmin, xmax, ymin, ymax
compute_group = function(data, scales, anchor = list(x = 0, y = 0), shadows = list("x", "y"), type = NULL, na.rm = TRUE) {
.compute_shadows(data = data, anchor = anchor, shadows = shadows, type = type)
}
)
# Calculate the shadows for each type / shadows / anchor
.compute_shadows <- function(data, anchor, shadows, type) {
# Deleted all type-checking, etc. for MWE
# Only 'type = c(double, double)' accepted, e.g. type = c(0, 1)
qs <- type
# compute shadows along the x-axis
if (any(shadows == "x")) {
shadows.x <- c(
xmin = as.numeric(stats::quantile(data[, "x"], qs[[1]])),
xmax = as.numeric(stats::quantile(data[, "x"], qs[[2]])),
ymin = anchor[["y"]],
ymax = anchor[["y"]])
}
# compute shadows along the y-axis
if (any(shadows == "y")) {
shadows.y <- c(
xmin = anchor[["x"]],
xmax = anchor[["x"]],
ymin = as.numeric(stats::quantile(data[, "y"], qs[[1]])),
ymax = as.numeric(stats::quantile(data[, "y"], qs[[2]])))
}
# store shadows in one data_frame
stats <- new_data_frame(c(x = shadows.x, y = shadows.y))
# return the statistics
stats
}
.