23

这是我定义的模型,它是一个具有 2 个完全连接层的简单 lstm。

import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class mylstm(nn.Module):
    def __init__(self,input_dim, output_dim, hidden_dim,linear_dim):
        super(mylstm, self).__init__()
        self.hidden_dim=hidden_dim
        self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
        self.linear1=nn.Linear(hidden_dim,linear_dim)
        self.linear2=nn.Linear(linear_dim,output_dim)
    def forward(self, input):
        out,_=self.lstm(input)
        out=nn.Dropout(p=0.3)(out)
        out=self.linear1(out)
        out=nn.Dropout(p=0.3)(out)
        out=self.linear2(out)
        return out

x_trainx_val是具有形状的浮动数据框(4478,30),而y_trainy_val是具有形状的浮动 df(4478,10)

    x_train.head()
Out[271]: 
       0       1       2       3    ...        26      27      28      29
0  1.6110  1.6100  1.6293  1.6370   ...    1.6870  1.6925  1.6950  1.6905
1  1.6100  1.6293  1.6370  1.6530   ...    1.6925  1.6950  1.6905  1.6960
2  1.6293  1.6370  1.6530  1.6537   ...    1.6950  1.6905  1.6960  1.6930
3  1.6370  1.6530  1.6537  1.6620   ...    1.6905  1.6960  1.6930  1.6955
4  1.6530  1.6537  1.6620  1.6568   ...    1.6960  1.6930  1.6955  1.7040

[5 rows x 30 columns]

x_train.shape
Out[272]: (4478, 30)

定义变量并做一次bp,我可以发现验证损失为1.4941

model=mylstm(30,10,200,100).double()
from torch import optim
optimizer=optim.RMSprop(model.parameters(), lr=0.001, alpha=0.9)
criterion=nn.L1Loss()
input_=torch.autograd.Variable(torch.from_numpy(np.array(x_train)))
target=torch.autograd.Variable(torch.from_numpy(np.array(y_train)))
input2_=torch.autograd.Variable(torch.from_numpy(np.array(x_val)))
target2=torch.autograd.Variable(torch.from_numpy(np.array(y_val)))
optimizer.zero_grad()
output=model(input_)
loss=criterion(output,target)
loss.backward()
optimizer.step()
moniter=criterion(model(input2_),target2)

moniter
Out[274]: tensor(1.4941, dtype=torch.float64, grad_fn=<L1LossBackward>)

但是我再次调用了 forward 函数,由于 dropout 的随机性,我得到了一个不同的数字

moniter=criterion(model(input2_),target2)
moniter
Out[275]: tensor(1.4943, dtype=torch.float64, grad_fn=<L1LossBackward>)

我应该怎么做才能消除预测短语中的所有丢失?

我试过eval()

moniter=criterion(model.eval()(input2_),target2)
moniter
Out[282]: tensor(1.4942, dtype=torch.float64, grad_fn=<L1LossBackward>)

moniter=criterion(model.eval()(input2_),target2)
moniter
Out[283]: tensor(1.4945, dtype=torch.float64, grad_fn=<L1LossBackward>)

并传递一个附加参数 p 来控制 dropout:

import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class mylstm(nn.Module):
    def __init__(self,input_dim, output_dim, hidden_dim,linear_dim,p):
        super(mylstm, self).__init__()
        self.hidden_dim=hidden_dim
        self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
        self.linear1=nn.Linear(hidden_dim,linear_dim)
        self.linear2=nn.Linear(linear_dim,output_dim)
    def forward(self, input,p):
        out,_=self.lstm(input)
        out=nn.Dropout(p=p)(out)
        out=self.linear1(out)
        out=nn.Dropout(p=p)(out)
        out=self.linear2(out)
        return out

model=mylstm(30,10,200,100,0.3).double()

output=model(input_)
loss=criterion(output,target)
loss.backward()
optimizer.step()
moniter=criterion(model(input2_,0),target2)
Traceback (most recent call last):

  File "<ipython-input-286-e49b6fac918b>", line 1, in <module>
    output=model(input_)

  File "D:\Users\shan xu\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 489, in __call__
    result = self.forward(*input, **kwargs)

TypeError: forward() missing 1 required positional argument: 'p'

但他们都没有工作。

4

3 回答 3

24

您必须在您的nn.Dropout图层中定义图层__init__并将其分配给您的模型以响应调用eval()

所以像这样改变你的模型应该对你有用:

class mylstm(nn.Module):
    def __init__(self,input_dim, output_dim, hidden_dim,linear_dim,p):
        super(mylstm, self).__init__()
        self.hidden_dim=hidden_dim
        self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
        self.linear1=nn.Linear(hidden_dim,linear_dim)
        self.linear2=nn.Linear(linear_dim,output_dim)

        # define dropout layer in __init__
        self.drop_layer = nn.Dropout(p=p)
    def forward(self, input):
        out,_= self.lstm(input)

        # apply model dropout, responsive to eval()
        out= self.drop_layer(out)
        out= self.linear1(out)

        # apply model dropout, responsive to eval()
        out= self.drop_layer(out)
        out= self.linear2(out)
        return out

如果您像这样更改它,那么一旦您调用,这个 dropout 就会处于非活动状态eval()

注意:如果您想在之后继续训练,您需要调用train()您的模型以退出评估模式。


您还可以eval()在此处找到一个用于评估模式的 dropout 的小型工作示例: nn.Dropout vs. F.dropout pyTorch

于 2018-12-21T09:04:20.600 回答
2

我添加这个答案只是因为我现在在尝试通过辍学分歧重现深贝叶斯主动学习时面临同样的问题。如果您需要保持 dropout 处于活动状态(例如为相同的测试实例引导一组不同的预测),您只需让模型处于训练模式,无需定义自己的 dropout 层。

由于在 pytorch 中你需要定义自己的预测函数,你可以像这样添加一个参数:

def predict_class(model, test_instance, active_dropout=False):
    if active_dropout:
        model.train()
    else:
        model.eval()
于 2019-06-13T17:35:18.813 回答
0

正如其他答案所说,希望在模型的__init__方法中定义 dropout 层,以便您的模型可以跟踪每个预定义层的所有信息。当模型的状态发生变化时,它会通知所有层并做一些相关的工作。例如,调用model.eval()模型时会停用 dropout 层,但会直接传递所有激活。一般来说,如果你想停用你的dropout层,你最好在__init__method using nn.Dropoutmodule中定义dropout层。

于 2019-01-17T08:42:51.357 回答