我正在尝试dredge
将 R 包MuMIn
与全局二项式glmer
模型一起使用。我发现我需要control = glmerControl(optimizer="bobyqa")
为收敛指定优化器。但是,当我去使用时dredge
,我得到一个错误。如果我减少模型中预测变量的数量,我可以删除bobyqa
规范,获得收敛,并使用疏通。我有什么办法可以dredge
去glmerControl(optimizer="bobyqa")
吗?
test.glob=glmer(exploitpark~X + as.factor(Y) + Z + A + B + (1|ID),
family=binomial(),
glmerControl(optimizer="bobyqa"), data=df)
options(na.action = "na.fail") # prevent fitting models to different datasets
test.Set = dredge(test.glob, beta=c("partial.sd"), extra = c("R^2"))
Fixed term is "(Intercept)"
glm.control(optimizer = c("bobyqa", "bobyqa"), calc.derivs = TRUE, : 未使用的参数 (optimizer = c("bobyqa", "bobyqa"), calc.derivs = TRUE, 使用。 last.params = FALSE,restart_edge = FALSE,boundary.tol = 1e-05,tolPwrss = 1e-07,compDev = TRUE,nAGQ0initStep = TRUE,checkControl = list(check.nobs.vs.rankZ = “忽略”,检查。 nobs.vs.nlev = “停止”,check.nlev.gtreq.5 = “忽略”,check.nlev.gtr.1 = “停止”,check.nobs.vs.nRE = “停止”,check.rankX = "message+drop.cols", check.scaleX = "警告", check.formula.LHS = "stop", check.response.not.const = "stop"), checkConv = list(check.conv.grad = list (action = "警告", tol = 0.001, relTol = NULL), check.conv.singular = list(action = "消息",tol = 1e-04),check.conv.hess = list(action = "warning",tol = 1e-06)),optCtrl = list())