2

我正在尝试按照PyTorch 指南在 C++ 中加载模型

以下示例代码有效:

import torch
import torchvision

# An instance of your model.
model = torchvision.models.resnet18()

# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 224, 224)

# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, example)

但是,当尝试其他网络时,例如squeezenet(或alexnet),我的代码失败了:

sq = torchvision.models.squeezenet1_0(pretrained=True)
traced_script_module = torch.jit.trace(sq, example) 

>> traced_script_module = torch.jit.trace(sq, example)                                      
/home/fabio/.local/lib/python3.6/site-packages/torch/jit/__init__.py:642: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function.
 Detailed error:
Not within tolerance rtol=1e-05 atol=1e-05 at input[0, 785] (3.1476082801818848 vs. 3.945478677749634) and 999 other locations (100.00%)
  _check_trace([example_inputs], func, executor_options, module, check_tolerance, _force_outplace)
4

1 回答 1

2

我刚刚发现加载的模型torchvision.models默认处于训练模式。AlexNet 和 SqueezeNet 都具有 Dropout 层,如果处于训练模式,则使得推理具有不确定性。只需更改为 eval 模式即可解决问题:

sq = torchvision.models.squeezenet1_0(pretrained=True)
sq.eval()
traced_script_module = torch.jit.trace(sq, example) 
于 2018-12-17T17:25:34.637 回答