我得到了 keras 尺寸错误
输入形状是这样的
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
结果
(5739, 1, 8) (5739,) (1435, 1, 8) (1435,)
型号如下
batch_size=128
epochs=20
from keras_self_attention import SeqSelfAttention
from keras.layers import Flatten
model = keras.models.Sequential()
model.add(keras.layers.LSTM(epochs, input_shape=(train_X.shape[0], train_X.shape[2]), return_sequences=True))
model.add(Flatten())
model.add(keras.layers.Dense(units=1))
model.compile(loss='mse', optimizer='adam')
model.summary()
结果
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_33 (LSTM) (None, 5739, 20) 2320
_________________________________________________________________
seq_self_attention_35 (SeqSe (None, 5739, 20) 1345
_________________________________________________________________
flatten_8 (Flatten) (None, 114780) 0
_________________________________________________________________
dense_33 (Dense) (None, 1) 114781
=================================================================
Total params: 118,446
Trainable params: 118,446
Non-trainable params: 0
_________________________________________________________________
但我在合适的步骤中有错误
history = model.fit(train_X, train_y, epochs=epochs, batch_size=batch_size, validation_data=(test_X, test_y), verbose=2, shuffle=False)
错误
ValueError: Error when checking input: expected lstm_33_input to have shape (5739, 8) but got array with shape (1, 8)
但我打印输入形状是(5739,8),我不明白(1,8)来自哪里。以及如何解决它。
input_shape=(train_X.shape[0], train_X.shape[2])
print(input_shape)
(5739, 8)
是 test_X、test_Y 还是 train 中输入形状的问题?我应该如何解决它?