0

我不确定这是否是预期的行为。考虑以下代码片段 -

library(forecast)
x <- c(
  0, 0, 0, 0, 0.00217764964493354, 0.00339032724317772, 0.00357374918778428, 
  0.00282328811130057, 0.00272679331678393, 0.0030360769697858, 
  0.00316665914235777, 0.00163300219677676, 0.00249817841157489, 
  0.00207838479809976, 0.00192104504850639, 0.00209700948212983, 
  0.00216356555603635, 0.00250983016815862, 0.0017474879860201
)
tsData <- ts(data = x, start = 2000, frequency = 1)
df <- data.frame(
  x = x, 
  fittedets = fitted(forecast(ets(tsData), h = 7)), 
  fittedarima = fitted(forecast(auto.arima(tsData), h = 7))
)
df

             x     fittedets fittedarima
1  0.000000000 -6.997521e-07 0.000000000
2  0.000000000 -7.065016e-11 0.000000000
3  0.000000000 -7.133162e-15 0.000000000
4  0.000000000 -7.201966e-19 0.000000000
5  0.002177650  0.000000e+00 0.000000000
6  0.003390327  2.177430e-03 0.002007587
7  0.003573749  3.390205e-03 0.003125561
8  0.002823288  3.573731e-03 0.003294659
9  0.002726793  2.823364e-03 0.002602805
10 0.003036077  2.726803e-03 0.002513846
11 0.003166659  3.036046e-03 0.002798976
12 0.001633002  3.166646e-03 0.002919360
13 0.002498178  1.633157e-03 0.001505474
14 0.002078385  2.498091e-03 0.002303084
15 0.001921045  2.078427e-03 0.001916074
16 0.002097009  1.921061e-03 0.001771022
17 0.002163566  2.096992e-03 0.001933245
18 0.002509830  2.163559e-03 0.001994603
19 0.001747488  2.509795e-03 0.002313826

实际值在第五个值之前为 0,而在两种模型的情况下,拟合值在第六个值之前约为 0。

对于前五个值,我假设它们大约为 0,例如x列。我错过了一些基本的东西吗?

4

1 回答 1

0

它还与auto.arima适合您的数据的 ARIMA 模型有关。如果您查看正在安装的模型:

Series: tsData 
ARIMA(1,0,0) with zero mean 

Coefficients:
         ar1
      0.9219
s.e.  0.0638

sigma^2 estimated as 6.076e-07:  log likelihood=108.59
AIC=-213.17   AICc=-212.42   BIC=-211.28

请记住,ARIMA 代表自回归综合移动平均线,输出告诉我们只拟合了模型的 AR 部分,这使其成为 AR(1) 模型:

y[t] = c + p1 * y[t-1]

通过这个等式,您可以了解这里发生了什么:

             x     fittedets fittedarima
1  0.000000000 -6.997521e-07 0.000000000
2  0.000000000 -7.065016e-11 0.000000000 # .9219 * 0 = 0
3  0.000000000 -7.133162e-15 0.000000000 # .9219 * 0 = 0
4  0.000000000 -7.201966e-19 0.000000000 # .9219 * 0 = 0
5  0.002177650  0.000000e+00 0.000000000 # .9219 * 0 = 0
6  0.003390327  2.177430e-03 0.002007587 # .9219 * .00217 = .002007
7  0.003573749  3.390205e-03 0.003125561 # .9219 * .00339 = .003125

您还可以通过绘图观察此行为:

library(ggplot2)
fcast <- forecast(auto.arima(tsData), h = 7)

autoplot(fcast) + 
  autolayer(fitted(fcast))

在此处输入图像描述

对于 ets 模型,也会发生类似的事情,但我希望这能说明为什么auto.arima会有这样的结果。下次您可以探索forecast包中包含的更多预测模型。

希望这有帮助!

于 2018-11-22T05:23:19.573 回答