我收到了一个 csv 文件,其中包含对冲基金在 10 月份买卖的 50 种不同的股票代码。我必须检查以确保购买价格在特定的买卖日介于高价和低价之间。
这是格式化的 CSV:
head(hilo)
# A tibble: 6 x 9
Symbol `Date of Purchase` `Date of Sale` `Purchase price` `Sale Price` open high low close
<chr> <date> <date> <dbl> <dbl> <chr> <chr> <chr> <chr>
1 PCH 2018-10-02 2018-10-03 40.2 38.4 NA NA NA NA
2 NBHC 2018-10-03 2018-10-11 37.8 36.2 NA NA NA NA
3 STWD 2018-10-08 2018-10-10 21.3 21.0 NA NA NA NA
4 RWT 2018-10-08 2018-10-11 16.1 16 NA NA NA NA
5 NVEE 2018-10-08 2018-10-10 84.3 83.0 NA NA NA NA
6 PRIM 2018-10-08 2018-10-10 23.5 23.1 NA NA NA NA
然后我使用 getSymbols() 收集符号,将它们格式化为一个列表,然后抓取高低列。
dataEnv <- new.env()
#Get symbol data from Yahoo!
getSymbols(hilo$Symbol, from = min(hilo$`Date of Purchase`, na.rm = TRUE), to = max(hilo$`Date of Sale`, na.rm = TRUE), env = dataEnv)
slist <- as.list(dataEnv)
Yhilo <- xts()
for (i in 1:length(slist)) {
Yhilo <- cbind(Yhilo, slist[[i]][,2:3])
}
head(Yhilo)
CEQP.High CEQP.Low TCP.High TCP.Low CRC.High CRC.Low WPC.High WPC.Low IRTC.High IRTC.Low RWT.High RWT.Low STWD.High STWD.Low NVEE.High NVEE.Low TILE.High TILE.Low
2018-10-01 02:00:00 37.69 36.80 31.17 30.30 49.040 47.850 64.35 63.46 95.50 92.300 16.31 16.08 21.54 21.33 87.300 84.000 23.50 22.28
2018-10-02 02:00:00 37.57 36.80 31.69 30.63 49.417 47.530 64.19 63.26 93.25 91.595 16.29 16.10 21.48 21.30 84.900 83.000 22.47 22.14
2018-10-03 02:00:00 37.47 36.88 31.10 30.49 50.340 48.380 64.15 62.80 92.33 90.212 16.38 16.26 21.56 21.30 83.790 82.620 22.54 22.05
2018-10-04 02:00:00 38.38 37.45 31.23 30.30 50.050 47.660 63.07 62.12 92.72 86.530 16.31 16.14 21.36 21.10 85.600 82.615 22.47 22.06
2018-10-05 02:00:00 38.36 37.61 31.16 30.42 48.368 44.627 63.77 62.90 88.34 83.790 16.22 16.04 21.34 21.03 84.518 82.460 22.54 22.06
2018-10-08 02:00:00 38.20 37.37 31.10 30.57 45.760 44.020 64.21 62.98 85.79 81.739 16.16 16.02 21.30 21.00 84.340 82.399 22.24 21.96
AEE.High AEE.Low AAWW.High AAWW.Low ABG.High ABG.Low TREX.High TREX.Low MNK.High MNK.Low ORBK.High ORBK.Low AHL.High AHL.Low AAON.High AAON.Low HURN.High HURN.Low
2018-10-01 02:00:00 63.42 62.70 64.47 61.73 69.78 67.90 77.50 73.72 29.90 29.12 59.92 59.00 41.92 41.65 38.10 36.37 49.64 48.74
2018-10-02 02:00:00 64.47 63.47 62.59 61.83 68.47 66.93 75.50 73.78 30.06 28.89 60.00 58.99 41.86 41.73 36.67 35.35 49.22 48.59
2018-10-03 02:00:00 64.66 63.08 63.23 61.92 67.05 65.70 75.10 73.79 31.41 29.93 60.35 59.31 42.02 41.82 36.06 35.37 49.48 48.35
2018-10-04 02:00:00 64.08 62.87 63.38 61.94 65.71 64.18 74.28 71.90 29.88 25.39 59.76 58.75 41.96 41.80 35.72 34.83 48.69 48.05
2018-10-05 02:00:00 65.29 63.94 61.08 59.44 64.55 62.47 73.42 69.80 27.25 25.12 59.87 58.60 42.16 41.75 35.03 34.01 49.38 48.17
2018-10-08 02:00:00 66.36 65.07 59.84 58.42 63.83 62.46 72.26 70.47 26.45 25.38 59.20 58.45 41.86 41.73 35.14 33.85 50.42 48.58
ATHN.High ATHN.Low AGIO.High AGIO.Low LBTYA.High LBTYA.Low AVYA.High AVYA.Low NBHC.High NBHC.Low OUT.High OUT.Low QUAD.High QUAD.Low GTT.High GTT.Low BKD.High
2018-10-01 02:00:00 133.80 126.18 79.17 76.30 29.48 28.02 22.358 21.66 37.80 37.10 20.07 19.82 21.08 20.17 43.96 42.69 9.98
2018-10-02 02:00:00 128.99 125.65 76.65 73.44 28.42 27.95 21.890 21.45 37.35 36.57 20.11 19.83 20.40 19.34 44.64 42.86 9.73
2018-10-03 02:00:00 127.67 125.27 74.28 70.54 28.56 27.22 22.030 21.60 37.83 36.54 20.08 19.44 20.14 19.20 46.22 44.06 9.56
2018-10-04 02:00:00 125.99 122.02 74.00 70.25 27.48 26.78 21.895 21.42 38.22 37.25 19.48 19.17 20.01 19.02 44.87 43.29 9.41
2018-10-05 02:00:00 126.72 121.95 72.05 67.96 27.19 26.23 21.980 21.27 37.88 36.92 19.56 19.29 19.21 18.50 45.92 42.27 9.21
2018-10-08 02:00:00 126.32 124.01 69.18 66.24 27.24 26.46 21.790 20.74 37.57 36.92 19.49 19.25 19.49 18.81 43.37 41.45 9.30
BKD.Low ATU.High ATU.Low CAKE.High CAKE.Low PCH.High PCH.Low MXL.High MXL.Low CATM.High CATM.Low RBA.High RBA.Low CNC.High CNC.Low CRUS.High CRUS.Low SMTC.High
2018-10-01 02:00:00 9.62 28.48 27.68 53.68 52.36 41.38 39.95 20.20 19.89 32.52 31.47 36.46 35.86 146.41 144.87 38.77 37.81 56.39
2018-10-02 02:00:00 9.35 28.11 27.66 53.19 51.99 40.39 39.33 20.20 19.75 31.94 31.20 36.59 36.10 145.95 144.16 38.44 37.80 55.77
2018-10-03 02:00:00 9.19 28.03 27.71 52.66 51.63 40.20 38.08 19.99 19.35 32.52 30.96 36.48 36.04 145.37 144.29 38.02 37.18 54.82
2018-10-04 02:00:00 9.05 28.10 27.61 52.02 51.20 38.81 37.84 19.79 19.08 32.04 31.43 36.57 36.11 145.90 142.65 38.03 37.35 54.66
2018-10-05 02:00:00 8.70 27.97 27.29 52.56 51.55 38.91 38.38 19.09 17.89 32.74 31.22 36.67 36.10 144.45 142.66 37.70 35.71 54.45
2018-10-08 02:00:00 8.96 27.55 27.20 52.32 51.35 39.34 38.44 17.79 17.15 33.22 32.11 36.77 36.05 144.33 141.05 36.60 35.38 52.39
SMTC.Low AGNC.High AGNC.Low DDD.High DDD.Low NUE.High NUE.Low ATGE.High ATGE.Low ANDE.High ANDE.Low TECH.High TECH.Low PCTY.High PCTY.Low WY.High WY.Low CNK.High
2018-10-01 02:00:00 54.52 18.68 18.48 19.13 17.93 64.83 63.42 48.68 47.77 38.26 37.04 205.74 202.75 81.300 78.730 32.37 31.83 40.46
2018-10-02 02:00:00 54.35 18.74 18.58 18.13 17.16 65.42 64.08 48.33 46.25 37.35 36.66 203.51 200.33 78.830 75.860 32.14 31.56 39.63
2018-10-03 02:00:00 53.80 18.76 18.42 18.51 17.65 65.63 65.04 46.94 46.17 37.70 36.53 204.29 199.34 77.720 75.700 31.93 30.65 39.53
2018-10-04 02:00:00 53.40 18.44 18.22 18.51 17.51 66.03 64.56 46.86 45.26 37.31 36.72 199.20 192.76 77.049 72.871 30.86 30.20 39.46
2018-10-05 02:00:00 51.71 18.34 18.09 19.19 17.72 65.05 63.54 46.17 44.95 37.14 36.34 195.24 190.62 74.200 70.410 30.79 30.18 39.83
2018-10-08 02:00:00 50.91 18.30 18.08 18.03 17.19 64.80 63.77 46.37 45.21 37.59 36.66 192.37 187.11 72.140 67.990 30.96 30.26 40.36
CNK.Low PRIM.High PRIM.Low JCOM.High JCOM.Low LOGM.High LOGM.Low ALRM.High ALRM.Low HUN.High HUN.Low
2018-10-01 02:00:00 39.45 25.20 24.23 83.25 81.52 92.89 87.34 60.200 56.67 27.41 26.73
2018-10-02 02:00:00 38.60 24.51 23.98 81.59 78.97 88.69 86.76 56.910 53.79 27.48 26.74
2018-10-03 02:00:00 38.80 24.42 24.08 80.38 79.06 88.44 86.79 56.430 54.55 27.77 26.82
2018-10-04 02:00:00 38.74 24.29 23.66 78.97 77.46 86.78 85.14 56.000 54.84 27.45 26.88
2018-10-05 02:00:00 39.17 23.87 23.26 78.31 76.82 87.45 82.60 53.790 49.27 27.10 25.82
2018-10-08 02:00:00 39.17 23.61 23.05 77.27 75.49 84.09 81.57 51.485 47.93 26.16 25.65
我遇到的麻烦是弄清楚如何从该数据集中提取 hilo 中相应符号的购买和销售日期的高点和低点。