7

初始情况

AVRO 序列化事件被发送到 azure 事件中心。这些事件使用 azure 事件中心捕获功能永久存储。捕获的数据以及事件中心元数据以 Apache Avro 格式编写。捕获 avro 文件中包含的原始事件应使用 (py)Spark 进行分析。


问题

如何使用 (py)Spark 反序列化包含在 AVRO 文件的字段/列中的 AVRO 序列化事件?(注解:事件的 avro 模式不被阅读器应用程序知道,但它作为 avro 标头包含在消息中)


背景

背景是物联网场景的分析平台。消息由运行在 kafka 上的 IoT 平台提供。为了更灵活地更改模式,战略决策是坚持使用 avro 格式。要启用 Azure 流分析 (ASA),请为每条消息指定 avro 架构(否则 ASA 无法反序列化消息)。

捕获文件 avro 架构

事件中心捕获功能生成的 avro 文件的架构如下所列:

{
    "type":"record",
    "name":"EventData",
    "namespace":"Microsoft.ServiceBus.Messaging",
    "fields":[
                 {"name":"SequenceNumber","type":"long"},
                 {"name":"Offset","type":"string"},
                 {"name":"EnqueuedTimeUtc","type":"string"},
                 {"name":"SystemProperties","type":{"type":"map","values":["long","double","string","bytes"]}},
                 {"name":"Properties","type":{"type":"map","values":["long","double","string","bytes"]}},
                 {"name":"Body","type":["null","bytes"]}
             ]
}

(请注意,实际消息以字节形式存储在正文字段中)

示例事件 avro 架构

为了说明,我将具有以下 avro 模式的事件发送到事件中心:

{
    "type" : "record",
    "name" : "twitter_schema",
    "namespace" : "com.test.avro",
    "fields" : [ 
                {"name" : "username","type" : "string"}, 
                {"name" : "tweet","type" : "string"},
                {"name" : "timestamp","type" : "long"}
    ],
}

示例事件

{
    "username": "stackoverflow",
    "tweet": "please help deserialize me",
    "timestamp": 1366150681
}

示例 avro 消息有效负载

(编码为字符串/注意包含 avro 模式)

Objavro.schema�{"type":"record","name":"twitter_schema","namespace":"com.test.avro","fields":[{"name":"username","type":"string"},{"name":"tweet","type":"string"},{"name":"timestamp","type":"long"}]}

所以最后这个有效载荷将作为字节存储在捕获 avro 文件的“正文”字段中。

.
.


我目前的做法

为了便于使用、测试和调试,我目前使用 pyspark jupyter notebook。

Spark 会话的配置:

%%configure
{
    "conf": {
        "spark.jars.packages": "com.databricks:spark-avro_2.11:4.0.0"
    }
}

将 avro 文件读入数据帧并输出结果:

capture_df = spark.read.format("com.databricks.spark.avro").load("[pathToCaptureAvroFile]")
capture_df.show()

结果:

+--------------+------+--------------------+----------------+----------+--------------------+
|SequenceNumber|Offset|     EnqueuedTimeUtc|SystemProperties|Properties|                Body|
+--------------+------+--------------------+----------------+----------+--------------------+
|            71|  9936|11/4/2018 4:59:54 PM|           Map()|     Map()|[4F 62 6A 01 02 1...|
|            72| 10448|11/4/2018 5:00:01 PM|           Map()|     Map()|[4F 62 6A 01 02 1...|

获取 Body 字段的内容并将其转换为字符串:

msgRdd = capture_df.select(capture_df.Body.cast("string")).rdd.map(lambda x: x[0])

这就是我让代码工作的程度。花了很多时间尝试反序列化实际消息,但没有成功。我将不胜感激任何帮助!

一些附加信息:Spark 在 Microsoft Azure HDInsight 3.6 集群上运行。Spark 版本是 2.2。Python 版本是 2.7.12。

4

3 回答 3

3

您要做的是应用于.decode('utf-8')Body 列中的每个元素。您必须从解码创建UDF ,以便您可以应用它。UDF 可以用

from pyspark.sql import functions as f

decodeElements = f.udf(lambda a: a.decode('utf-8'))

以下是将 IoT 中心存储的 avro 文件解析为自定义 Blob 存储端点的完整示例:

storage_account_name = "<YOUR STORACE ACCOUNT NAME>"
storage_account_access_key = "<YOUR STORAGE ACCOUNT KEY>"

# Read all files from one day. All PartitionIds are included. 
file_location = "wasbs://<CONTAINER>@"+storage_account_name+".blob.core.windows.net/<IoT Hub Name>/*/2018/11/30/*/*"
file_type = "avro"

# Read raw data
spark.conf.set(
  "fs.azure.account.key."+storage_account_name+".blob.core.windows.net",
  storage_account_access_key)

reader = spark.read.format(file_type).option("inferSchema", "true")
raw = reader.load(file_location)

# Decode Body into strings
from pyspark.sql import functions as f

decodeElements = f.udf(lambda a: a.decode('utf-8'))

jsons = raw.select(
    raw['EnqueuedTimeUtc'],
    raw['SystemProperties.connectionDeviceId'].alias('DeviceId'), 
    decodeElements(raw['Body']).alias("Json")
)

# Parse Json data
from pyspark.sql.functions import from_json

json_schema = spark.read.json(jsons.rdd.map(lambda row: row.Json)).schema
data = jsons.withColumn('Parsed', from_json('Json', json_schema)).drop('Json')

Disclamer:我对 Python 和 Databricks 都是新手,我的解决方案可能并不完美。但是我花了一天多的时间来完成这项工作,我希望这对某人来说是一个很好的起点。

于 2018-12-04T08:56:42.383 回答
0

我想你也可以这样做:

jsonRdd = raw.select(raw.Body.cast("string"))
于 2018-12-07T20:48:56.657 回答
0

我遇到过同样的问题。

Spark 2.4 版本为我解决了这个问题。

您可以在此处找到文档:https ://databricks.com/blog/2018/11/30/apache-avro-as-a-built-in-data-source-in-apache-spark-2-4.html

备注:你需要知道你的 AVRO 文件是什么样子才能创建你的模式(他们只是在这里加载它)。

缺点:它目前仅在 Scala 和 Java 中可用。据我所知,这在 Python 中是不可能的。

于 2019-04-19T12:26:53.347 回答