0

我试图在探索性因素分析后计算欧米茄估计,以估计我发现的组件的可靠性。使用包中的omega()函数psych我得到这个输出:

欧米茄函数的输出

       Alpha:                 0.8 
        G.6:                   0.86 
        Omega Hierarchical:    0.37 
        Omega H asymptotic:    0.43 
        Omega Total            0.86 

    Schmid Leiman Factor loadings greater than 

 0.2 
              g   F1*   F2*   F3*   h2   u2   p2
    EMS1   0.30        0.71       0.59 0.41 0.15
    EMS3        -0.21  0.64       0.53 0.47 0.05
    EMS4         0.62             0.41 0.59 0.04
    EMS7   0.34        0.62       0.50 0.50 0.23
    EMS8   0.36        0.42       0.32 0.68 0.40
    EMS9         0.57             0.33 0.67 0.00
    EMS10              0.39       0.20 0.80 0.11
    EMS11        0.72             0.51 0.49 0.02
    EMS12        0.68             0.46 0.54 0.02
    EMS15        0.54 -0.24       0.41 0.59 0.02
    EMS16  0.22        0.77       0.63 0.37 0.08
    EMS19        0.65             0.52 0.48 0.01
    EMS20  0.27        0.53       0.36 0.64 0.21
    EMS21        0.62             0.40 0.60 0.04
    EMS23        0.63             0.42 0.58 0.07
    EMS24  0.68                   0.45 0.55 1.02
    EMS25  0.73                   0.56 0.44 0.95
    EMS27  0.45        0.20       0.25 0.75 0.83
    EMS28  0.78                   0.59 0.41 1.02
    EMS34  0.26  0.31  0.48       0.34 0.66 0.20

    With eigenvalues of:
      g F1* F2* F3* 
    2.5 3.4 2.9 0.0 

    general/max  0.73   max/min =   Inf
    mean percent general =  0.27    with sd =  0.36 and cv of  1.33 
    Explained Common Variance of the general factor =  0.28 

    The degrees of freedom are 133  and the fit is  0.8 
    The number of observations was  601  with Chi Square =  471.81  with prob <  1.9e-39
    The root mean square of the residuals is  0.04 
    The df corrected root mean square of the residuals is  0.05
    RMSEA index =  0.066  and the 10 % confidence intervals are  0.059 0.072
    BIC =  -379.21

    Compare this with the adequacy of just a general factor and no group factors
    The degrees of freedom for just the general factor are 170  and the fit is  5.4 
    The number of observations was  601  with Chi Square =  3195.63  with prob <  0
    The root mean square of the residuals is  0.22 
    The df corrected root mean square of the residuals is  0.24 

    RMSEA index =  0.173  and the 10 % confidence intervals are  0.167 0.177
    BIC =  2107.87

    Measures of factor score adequacy             
                                                    g  F1*  F2* F3*
    Correlation of scores with factors            0.9 0.94 0.93   0
    Multiple R square of scores with factors      0.8 0.89 0.86   0
    Minimum correlation of factor score estimates 0.6 0.78 0.73  -1

     Total, General and Subset omega for each subset
                                                     g  F1*  F2* F3*
    Omega total for total scores and subscales    0.86 0.82 0.85  NA
    Omega general for total scores and subscales  0.37 0.08 0.34  NA
    Omega group for total scores and subscales    0.58 0.75 0.51  NA
    Warning messages:
    1: In fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,  :
       A loading greater than abs(1) was detected.  Examine the loadings carefully.
    2: In fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,  :
      An ultra-Heywood case was detected.  Examine the results carefully
    3: In cov2cor(t(w) %*% r %*% w) :
      diag(.) had 0 or NA entries; non-finite result is doubtful

这就是我调用函数的方式: omega(df[,items],nfactors=3)

搜索指导后,我找不到为什么没有为第三个因素计算欧米茄。我不确定这是否与以下警告消息之一有关:

Warning messages:
1: In fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,  :
   A loading greater than abs(1) was detected.  Examine the loadings carefully.
2: In fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,  :
  An ultra-Heywood case was detected.  Examine the results carefully
3: In cov2cor(t(w) %*% r %*% w) :
  diag(.) had 0 or NA entries; non-finite result is doubtful
4

1 回答 1

0

这可能是因为 Omega 是通过拟合 CFA 模型来计算的,并且在您的情况下,有 3 个因子,因子号 3 用于识别原因。所以你不会指望欧米茄会被计算出来

于 2019-05-08T14:16:48.630 回答