29
4

9 回答 9

19

首先,我将向您展示一个递归版本。

// Cartesion product of vector of vectors

#include <vector>
#include <iostream>
#include <iterator>

// Types to hold vector-of-ints (Vi) and vector-of-vector-of-ints (Vvi)
typedef std::vector<int> Vi;
typedef std::vector<Vi> Vvi;

// Just for the sample -- populate the intput data set
Vvi build_input() {
   Vvi vvi;

   for(int i = 0; i < 3; i++) {
      Vi vi;
      for(int j = 0; j < 3; j++) {
         vi.push_back(i*10+j);
      }
      vvi.push_back(vi);
   }
   return vvi;
}

// just for the sample -- print the data sets
std::ostream&
operator<<(std::ostream& os, const Vi& vi)
{
  os << "(";
  std::copy(vi.begin(), vi.end(), std::ostream_iterator<int>(os, ", "));
  os << ")";
  return os;
}
std::ostream&
operator<<(std::ostream& os, const Vvi& vvi)
{
  os << "(\n";
  for(Vvi::const_iterator it = vvi.begin();
      it != vvi.end();
      it++) {
      os << "  " << *it << "\n";
  }
  os << ")";
  return os;
}

// recursive algorithm to to produce cart. prod.
// At any given moment, "me" points to some Vi in the middle of the
// input data set. 
//   for int i in *me:
//      add i to current result
//      recurse on next "me"
// 
void cart_product(
    Vvi& rvvi,  // final result
    Vi&  rvi,   // current result 
    Vvi::const_iterator me, // current input
    Vvi::const_iterator end) // final input
{
    if(me == end) {
        // terminal condition of the recursion. We no longer have
        // any input vectors to manipulate. Add the current result (rvi)
        // to the total set of results (rvvvi).
        rvvi.push_back(rvi);
        return;
    }

    // need an easy name for my vector-of-ints
    const Vi& mevi = *me;
    for(Vi::const_iterator it = mevi.begin();
        it != mevi.end();
        it++) {
        // final rvi will look like "a, b, c, ME, d, e, f"
        // At the moment, rvi already has "a, b, c"
        rvi.push_back(*it);  // add ME
        cart_product(rvvi, rvi, me+1, end); add "d, e, f"
        rvi.pop_back(); // clean ME off for next round
    }
}

// sample only, to drive the cart_product routine.
int main() {
  Vvi input(build_input());
  std::cout << input << "\n";

  Vvi output;
  Vi outputTemp;
  cart_product(output, outputTemp, input.begin(), input.end());
  std::cout << output << "\n";
}

现在,我将向您展示我无耻地从@John 窃取的递归迭代版本:

程序的其余部分几乎相同,仅显示cart_product功能。

// Seems like you'd want a vector of iterators
// which iterate over your individual vector<int>s.
struct Digits {
    Vi::const_iterator begin;
    Vi::const_iterator end;
    Vi::const_iterator me;
};
typedef std::vector<Digits> Vd;
void cart_product(
    Vvi& out,  // final result
    Vvi& in)  // final result

{
    Vd vd;

    // Start all of the iterators at the beginning.
    for(Vvi::const_iterator it = in.begin();
        it != in.end();
        ++it) {
        Digits d = {(*it).begin(), (*it).end(), (*it).begin()};
        vd.push_back(d);
    }


    while(1) {

        // Construct your first product vector by pulling 
        // out the element of each vector via the iterator.
        Vi result;
        for(Vd::const_iterator it = vd.begin();
            it != vd.end();
            it++) {
            result.push_back(*(it->me));
        }
        out.push_back(result);

        // Increment the rightmost one, and repeat.

        // When you reach the end, reset that one to the beginning and
        // increment the next-to-last one. You can get the "next-to-last"
        // iterator by pulling it out of the neighboring element in your
        // vector of iterators.
        for(Vd::iterator it = vd.begin(); ; ) {
            // okay, I started at the left instead. sue me
            ++(it->me);
            if(it->me == it->end) {
                if(it+1 == vd.end()) {
                    // I'm the last digit, and I'm about to roll
                    return;
                } else {
                    // cascade
                    it->me = it->begin;
                    ++it;
                }
            } else {
                // normal
                break;
            }
        }
    }
}
于 2011-03-11T23:45:31.870 回答
18

这是 C++11 中的解决方案。

可变大小数组的索引可以通过模运算雄辩地完成。

输出中的总行数是输入向量大小的乘积。那是:

N = v[0].size() * v[1].size() * v[2].size()

因此,主循环具有n作为迭代变量的 from0N-1。原则上,每个值都n编码足够的信息来提取v该迭代的每个索引。这是使用重复模运算在子循环中完成的:

#include <cstdlib>
#include <iostream>
#include <numeric>
#include <vector>
using namespace std;

void cartesian( vector<vector<int> >& v ) {
  auto product = []( long long a, vector<int>& b ) { return a*b.size(); };
  const long long N = accumulate( v.begin(), v.end(), 1LL, product );
  vector<int> u(v.size());
  for( long long n=0 ; n<N ; ++n ) {
    lldiv_t q { n, 0 };
    for( long long i=v.size()-1 ; 0<=i ; --i ) {
      q = div( q.quot, v[i].size() );
      u[i] = v[i][q.rem];
    }
    // Do what you want here with u.
    for( int x : u ) cout << x << ' ';
    cout << '\n';
  }
}

int main() {
  vector<vector<int> > v { { 1, 2, 3 },
                           { 4, 5 },
                           { 6, 7, 8 } };
  cartesian(v);
  return 0;
}

输出:

1 4 6 
1 4 7 
1 4 8 
...
3 5 8
于 2015-07-01T19:04:48.567 回答
15

更短的代码:

vector<vector<int>> cart_product (const vector<vector<int>>& v) {
    vector<vector<int>> s = {{}};
    for (const auto& u : v) {
        vector<vector<int>> r;
        for (const auto& x : s) {
            for (const auto y : u) {
                r.push_back(x);
                r.back().push_back(y);
            }
        }
        s = move(r);
    }
    return s;
}
于 2013-06-11T17:51:04.330 回答
3

这是我的解决方案。也是迭代的,但比上面的要短一点......

void xp(const vector<vector<int>*>& vecs, vector<vector<int>*> *result) {
  vector<vector<int>*>* rslts;
  for (int ii = 0; ii < vecs.size(); ++ii) {
    const vector<int>& vec = *vecs[ii];
    if (ii == 0) {
      // vecs=[[1,2],...] ==> rslts=[[1],[2]]
      rslts = new vector<vector<int>*>;
      for (int jj = 0; jj < vec.size(); ++jj) {
        vector<int>* v = new vector<int>;
        v->push_back(vec[jj]);
        rslts->push_back(v);
      }
    } else {
      // vecs=[[1,2],[3,4],...] ==> rslts=[[1,3],[1,4],[2,3],[2,4]]
      vector<vector<int>*>* tmp = new vector<vector<int>*>;
      for (int jj = 0; jj < vec.size(); ++jj) {  // vec[jj]=3 (first iter jj=0)
        for (vector<vector<int>*>::const_iterator it = rslts->begin();
             it != rslts->end(); ++it) {
          vector<int>* v = new vector<int>(**it);       // v=[1]
          v->push_back(vec[jj]);                        // v=[1,3]
          tmp->push_back(v);                            // tmp=[[1,3]]
        }
      }
      for (int kk = 0; kk < rslts->size(); ++kk) {
        delete (*rslts)[kk];
      }
      delete rslts;
      rslts = tmp;
    }
  }
  result->insert(result->end(), rslts->begin(), rslts->end());
  delete rslts;
}

我从我写的一个haskell版本中得到了一些痛苦:

xp :: [[a]] -> [[a]]
xp [] = []
xp [l] = map (:[]) l
xp (h:t) = foldr (\x acc -> foldr (\l acc -> (x:l):acc) acc (xp t)) [] h
于 2011-09-11T21:33:13.660 回答
3

似乎你想要一个vector迭代你个人vector<int>的迭代器。

从头开始启动所有迭代器。通过迭代器提取每个向量的元素来构造您的第一个乘积向量。

增加最右边的一个,然后重复。

当你到达终点时,将那个重置到开头并增加倒数第二个。您可以通过将“倒数第二个”迭代器从迭代器向量中的相邻元素中拉出来获得。

继续循环,直到最后一个倒数第二个迭代器都结束。然后,重置它们,增加倒数第三个迭代器。一般来说,这可以级联。

它就像一个里程表,但每个不同的数字都有不同的基数。

于 2011-03-11T22:50:13.227 回答
1

因为我需要相同的功能,所以我实现了一个迭代器,它根据需要动态计算笛卡尔积,并对其进行迭代。

它可以如下使用。

#include <forward_list>
#include <iostream>
#include <vector>
#include "cartesian.hpp"

int main()
{
    // Works with a vector of vectors
    std::vector<std::vector<int>> test{{1,2,3}, {4,5,6}, {8,9}};
    CartesianProduct<decltype(test)> cp(test);
    for(auto const& val: cp) {
        std::cout << val.at(0) << ", " << val.at(1) << ", " << val.at(2) << "\n";
    }

    // Also works with something much less, like a forward_list of forward_lists
    std::forward_list<std::forward_list<std::string>> foo{{"boo", "far", "zab"}, {"zoo", "moo"}, {"yohoo", "bohoo", "whoot", "noo"}};
    CartesianProduct<decltype(foo)> bar(foo);
    for(auto const& val: bar) {
        std::cout << val.at(0) << ", " << val.at(1) << ", " << val.at(2) << "\n";
    }
}

文件cartesian.hpp 看起来像这样。

#include <cassert>

#include <limits>
#include <stdexcept>
#include <vector>

#include <boost/iterator/iterator_facade.hpp>

//! Class iterating over the Cartesian product of a forward iterable container of forward iterable containers
template<typename T>
class CartesianProductIterator : public boost::iterator_facade<CartesianProductIterator<T>, std::vector<typename T::value_type::value_type> const, boost::forward_traversal_tag>
{
    public:
        //! Delete default constructor
        CartesianProductIterator() = delete;

        //! Constructor setting the underlying iterator and position
        /*!
         * \param[in] structure The underlying structure
         * \param[in] pos The position the iterator should be initialized to.  std::numeric_limits<std::size_t>::max()stands for the end, the position after the last element.
         */
        explicit CartesianProductIterator(T const& structure, std::size_t pos);

    private:
        //! Give types more descriptive names
        // \{
        typedef T OuterContainer;
        typedef typename T::value_type Container;
        typedef typename T::value_type::value_type Content;
        // \}

        //! Grant access to boost::iterator_facade
        friend class boost::iterator_core_access;

        //! Increment iterator
        void increment();

        //! Check for equality
        bool equal(CartesianProductIterator<T> const& other) const;

        //! Dereference iterator
        std::vector<Content> const& dereference() const;

        //! The part we are iterating over
        OuterContainer const& structure_;

        //! The position in the Cartesian product
        /*!
         * For each element of structure_, give the position in it.
         * The empty vector represents the end position.
         * Note that this vector has a size equal to structure->size(), or is empty.
         */
        std::vector<typename Container::const_iterator> position_;

        //! The position just indexed by an integer
        std::size_t absolutePosition_ = 0;

        //! The begin iterators, saved for convenience and performance
        std::vector<typename Container::const_iterator> cbegins_;

        //! The end iterators, saved for convenience and performance
        std::vector<typename Container::const_iterator> cends_;

        //! Used for returning references
        /*!
         * We initialize with one empty element, so that we only need to add more elements in increment().
         */
        mutable std::vector<std::vector<Content>> result_{std::vector<Content>()};

        //! The size of the instance of OuterContainer
        std::size_t size_ = 0;
};

template<typename T>
CartesianProductIterator<T>::CartesianProductIterator(OuterContainer const& structure, std::size_t pos) : structure_(structure)
{
    for(auto & entry: structure_) {
        cbegins_.push_back(entry.cbegin());
        cends_.push_back(entry.cend());
        ++size_;
    }

    if(pos == std::numeric_limits<std::size_t>::max() || size_ == 0) {
        absolutePosition_ = std::numeric_limits<std::size_t>::max();
        return;
    }

    // Initialize with all cbegin() position
    position_.reserve(size_);
    for(std::size_t i = 0; i != size_; ++i) {
        position_.push_back(cbegins_[i]);
        if(cbegins_[i] == cends_[i]) {
            // Empty member, so Cartesian product is empty
            absolutePosition_ = std::numeric_limits<std::size_t>::max();
            return;
        }
    }

    // Increment to wanted position
    for(std::size_t i = 0; i < pos; ++i) {
        increment();
    }
}

template<typename T>
void CartesianProductIterator<T>::increment()
{
    if(absolutePosition_ == std::numeric_limits<std::size_t>::max()) {
        return;
    }

    std::size_t pos = size_ - 1;

    // Descend as far as necessary
    while(++(position_[pos]) == cends_[pos] && pos != 0) {
        --pos;
    }
    if(position_[pos] == cends_[pos]) {
        assert(pos == 0);
        absolutePosition_ = std::numeric_limits<std::size_t>::max();
        return;
    }
    // Set all to begin behind pos
    for(++pos; pos != size_; ++pos) {
        position_[pos] = cbegins_[pos];
    }
    ++absolutePosition_;
    result_.emplace_back();
}

template<typename T>
std::vector<typename T::value_type::value_type> const& CartesianProductIterator<T>::dereference() const
{
    if(absolutePosition_ == std::numeric_limits<std::size_t>::max()) {
        throw new std::out_of_range("Out of bound dereference in CartesianProductIterator\n");
    }
    auto & result = result_[absolutePosition_];
    if(result.empty()) {
        result.reserve(size_);
        for(auto & iterator: position_) {
            result.push_back(*iterator);
        }
    }

    return result;
}

template<typename T>
bool CartesianProductIterator<T>::equal(CartesianProductIterator<T> const& other) const
{
    return absolutePosition_ == other.absolutePosition_ && structure_ == other.structure_;
}

//! Class that turns a forward iterable container of forward iterable containers into a forward iterable container which iterates over the Cartesian product of the forward iterable containers
template<typename T>
class CartesianProduct
{
    public:
        //! Constructor from type T
        explicit CartesianProduct(T const& t) : t_(t) {}

        //! Iterator to beginning of Cartesian product
        CartesianProductIterator<T> begin() const { return CartesianProductIterator<T>(t_, 0); }

        //! Iterator behind the last element of the Cartesian product
        CartesianProductIterator<T> end() const { return CartesianProductIterator<T>(t_, std::numeric_limits<std::size_t>::max()); }

    private:
        T const& t_;
};

如果有人对如何使其更快或更好有意见,我将不胜感激。

于 2013-09-10T18:33:20.750 回答
0

我只是被迫为我正在从事的项目实施这个,我想出了下面的代码。它可以卡在标题中,它的使用非常简单,但它会返回您可以从向量向量中获得的所有组合。它返回的数组只包含整数。这是一个有意识的决定,因为我只想要索引。通过这种方式,我可以索引到每个向量的向量,然后执行我/任何人都需要的计算……最好避免让 CartesianProduct 本身持​​有“东西”,这是一个基于计数而不是数据结构的数学概念。我对 c++ 还很陌生,但这已经在解密算法中进行了非常彻底的测试。有一些简单的递归,但总的来说这是一个简单计数概念的简单实现。

// Use of the CartesianProduct class is as follows. Give it the number
// of rows and the sizes of each of the rows. It will output all of the 
// permutations of these numbers in their respective rows.
// 1. call cp.permutation() // need to check all 0s.
// 2. while cp.HasNext() // it knows the exit condition form its inputs.
// 3.   cp.Increment() // Make the next permutation
// 4.   cp.permutation() // get the next permutation

class CartesianProduct{
  public:
  CartesianProduct(int num_rows, vector<int> sizes_of_rows){
    permutation_ = new int[num_rows];
    num_rows_ = num_rows;
    ZeroOutPermutation();
    sizes_of_rows_ = sizes_of_rows;
    num_max_permutations_ = 1;
    for (int i = 0; i < num_rows; ++i){
      num_max_permutations_ *= sizes_of_rows_[i]; 
    }
  }

  ~CartesianProduct(){
    delete permutation_;
  }

  bool HasNext(){
    if(num_permutations_processed_ != num_max_permutations_) {
      return true;
    } else {
      return false;
    }
  }

 void Increment(){
    int row_to_increment = 0;
    ++num_permutations_processed_;
    IncrementAndTest(row_to_increment);
  }

  int* permutation(){
    return permutation_;
  }

  int num_permutations_processed(){
    return num_permutations_processed_;
  }
  void PrintPermutation(){
    cout << "( ";
    for (int i = 0; i < num_rows_; ++i){
      cout << permutation_[i] << ", ";
    }
    cout << " )" << endl;
  }

private:
  int num_permutations_processed_;
  int *permutation_;
  int num_rows_;
  int num_max_permutations_;
  vector<int> sizes_of_rows_;

  // Because CartesianProduct is called first initially with it's values
  // of 0 and because those values are valid and important output
  // of the CartesianProduct we increment the number of permutations
  // processed here when  we populate the permutation_ array with 0s.
  void ZeroOutPermutation(){
    for (int i = 0; i < num_rows_; ++i){
      permutation_[i] = 0;
    }

    num_permutations_processed_ = 1;
  }

  void IncrementAndTest(int row_to_increment){
    permutation_[row_to_increment] += 1;
    int max_index_of_row = sizes_of_rows_[row_to_increment] - 1;
    if (permutation_[row_to_increment] > max_index_of_row){
      permutation_[row_to_increment] = 0;
      IncrementAndTest(row_to_increment + 1);
    }
  }
};
于 2015-03-31T08:35:40.690 回答
0
#include <iostream>
#include <vector>

void cartesian (std::vector<std::vector<int>> const& items) {
  auto n = items.size();
  auto next = [&](std::vector<int> & x) {
      for ( int i = 0; i < n; ++ i ) 
        if ( ++x[i] == items[i].size() ) x[i] = 0; 
        else return true;
      return false;
  };
  auto print = [&](std::vector<int> const& x) {
    for ( int i = 0; i < n; ++ i ) 
      std::cout << items[i][x[i]] << ",";
    std::cout << "\b \n";
  };
  std::vector<int> x(n);
  do print(x); while (next(x)); // Shazam!
}

int main () {
  std::vector<std::vector<int>> 
    items { { 1, 2, 3 }, { 4, 5 }, { 6, 7, 8 } };
  cartesian(items);
  return 0;
}

这背后的想法如下。

n := items.size().
让,m_i := items[i].size()为所有i。 让.{0,1,...,n-1}
M := {0,1,...,m_0-1} x {0,1,...,m_1-1} x ... x {0,1,...,m_{n-1}-1}

我们首先解决更简单的迭代问题M。这是由nextlambda 完成的。该算法只是小学生用来加 1 的“携带”例行程序,尽管使用的是混合基数系统。

我们使用它来解决更一般的问题,通过all xinM的公式将一个元组转换为所需的元组之一。我们在lambda 中执行此转换。items[i][x[i]]i{0,1,...,n-1}print

然后我们用 执行迭代do print(x); while (next(x));

现在对复杂性进行一些评论,假设m_i > 1对于所有人i

  • 该算法需要O(n)空间。请注意,笛卡尔积的显式构造需要O(m_0 m_1 m_2 ... m_{n-1}) >= O(2^n)空间。所以这在空间上比任何需要所有元组同时存储在内存中的算法都要好得多。
  • next函数需要摊销O(1)时间(通过几何级数参数)。
  • print功能需要O(n)时间。
  • 因此,总的来说,该算法具有时间复杂度O(n|M|)和空间复杂度O(n)(不包括存储成本items)。

需要注意的一个有趣的事情是,如果print替换为一个平均只检查O(1)每个元组坐标而不是所有坐标的函数,那么时间复杂度会下降到O(|M|),也就是说,它变成了相对于笛卡尔积的大小的线性时间。换句话说,避免每次迭代复制元组在某些情况下可能是有意义的。

于 2017-01-27T06:37:25.167 回答
0

此版本不支持迭代器或范围,但它是一个简单的直接实现,使用乘法运算符表示笛卡尔积,并使用 lambda 执行操作。

该界面设计有我需要的特定功能。我需要灵活地选择向量,以不混淆代码的方式应用笛卡尔积。

int main()
{
    vector< vector<long> > v{ { 1, 2, 3 }, { 4, 5 }, { 6, 7, 8 } };
    (Cartesian<long>(v[0]) * v[1] * v[2]).ForEach(
        [](long p_Depth, long *p_LongList)
        {
            std::cout << p_LongList[0] << " " << p_LongList[1] << " " << p_LongList[2] << std::endl;
        }
    );
}

该实现使用类结构的递归来实现每个向量上的嵌入式 for 循环。该算法直接作用于输入向量,不需要大型临时数组。易于理解和调试。

使用 std::function p_Action 而不是 void p_Action(long p_Depth, T *p_ParamList) 作为 lambda 参数将允许我捕获局部变量,如果我愿意的话。在上面的电话中,我没有。

但你知道的,不是吗。“function”是一个模板类,它接受函数的类型参数并使其可调用。

#include <vector>
#include <iostream>
#include <functional>
#include <string>
using namespace std;

template <class T>
class Cartesian
{
private:
    vector<T> &m_Vector;
    Cartesian<T> *m_Cartesian;
public:
    Cartesian(vector<T> &p_Vector, Cartesian<T> *p_Cartesian=NULL)
        : m_Vector(p_Vector), m_Cartesian(p_Cartesian)
    {};
    virtual ~Cartesian() {};
    Cartesian<T> *Clone()
    {
        return new Cartesian<T>(m_Vector, m_Cartesian ? m_Cartesian->Clone() : NULL);
    };
    Cartesian<T> &operator *=(vector<T> &p_Vector)
    {
        if (m_Cartesian)
            (*m_Cartesian) *= p_Vector;
        else
            m_Cartesian = new Cartesian(p_Vector);
        return *this;
    };
    Cartesian<T> operator *(vector<T> &p_Vector)
    {
        return (*Clone()) *= p_Vector;
    };
    long Depth()
    {
        return m_Cartesian ? 1 + m_Cartesian->Depth() : 1;
    };
    void ForEach(function<void (long p_Depth, T *p_ParamList)> p_Action)
    {
        Loop(0, new T[Depth()], p_Action);
    };
private:
    void Loop(long p_Depth, T *p_ParamList, function<void (long p_Depth, T *p_ParamList)> p_Action)
    {
        for (T &element : m_Vector)
        {
            p_ParamList[p_Depth] = element;
            if (m_Cartesian)
                m_Cartesian->Loop(p_Depth + 1, p_ParamList, p_Action);
            else
                p_Action(Depth(), p_ParamList);
        }
    };
};
于 2017-08-10T11:31:05.003 回答