我正在尝试编写函数,使用 monoids 和 Foldable 将列表中的所有元素相加和相乘。我设置了一些我认为有效的代码:
data Rose a = a :> [Rose a]
deriving (Eq, Show)
instance Functor Rose where
fmap f rose@(a:>b) = (f a :> map (fmap f) b)
class Monoid a where
mempty :: a
(<>) :: a -> a -> a
instance Monoid [a] where
mempty = []
(<>) = (++)
newtype Sum a = Sum { unSum :: a } deriving (Eq, Show)
newtype Product a = Product { unProduct :: a } deriving (Eq, Show)
instance Num a => Monoid (Sum a) where
mempty = Sum 0
Sum n1 <> Sum n2 = Sum (n1 + n2)
instance Num a => Monoid (Product a) where
mempty = Product 1
Product n1 <> Product n2 = Product (n1 * n2)
class Functor f => Foldable f where
fold :: Monoid m => f m -> m
foldMap :: Monoid m => (a -> m) -> f a -> m
foldMap f a = fold (fmap f a)
instance Foldable [] where
fold = foldr (<>) mempty
instance Foldable Rose where
fold (a:>[]) = a <> mempty
fold (a:>b) = a <> (fold (map fold b))
然后在定义了不同的 Foldable 实例以及 Sum 和 Product 类型之后,我想定义两个函数,它们分别相加将数据结构中的元素相乘,但这会产生我不知道如何解释的错误,我必须承认我与实际逻辑相比,猜测工作更多,因此欢迎对您的答案进行全面解释。
fsum, fproduct :: (Foldable f, Num a) => f a -> a
fsum b = foldMap Sum b
fproduct b = foldMap Product b
错误:
Assignment3.hs:68:14: error:
* Occurs check: cannot construct the infinite type: a ~ Sum a
* In the expression: foldMap Sum b
In an equation for `fsum': fsum b = foldMap Sum b
* Relevant bindings include
b :: f a (bound at Assignment3.hs:68:6)
fsum :: f a -> a (bound at Assignment3.hs:68:1)
|
68 | fsum b = foldMap Sum b
| ^^^^^^^^^^^^^
Assignment3.hs:69:14: error:
* Occurs check: cannot construct the infinite type: a ~ Product a
* In the expression: foldMap Product b
In an equation for `fproduct': fproduct b = foldMap Product b
* Relevant bindings include
b :: f a (bound at Assignment3.hs:69:10)
fproduct :: f a -> a (bound at Assignment3.hs:69:1)
|
69 | fproduct b = foldMap Product b
| ^^^^^^^^^^^^^^^^^