1

我有一系列使用 MASS 的 kde2d 函数以下列方式创建的 2D 直方图:

    # Loading libraries
    library(MASS)
    library(RcolorBrewer)
    # Loading data
    data <- as.matrix(read.table('data.dat'))
    # Create the 2dhist object      
    hist_2d <- kde2d(data[,1],data[,2],n = 60, lims=c(-180,180,-180,180))
    # Define the color palette
    rf <- colorRampPalette(rev(brewer.pal(11,'Spectral')))
    r <- rf(60)
    # Defining the axis
    at_x = seq(-180,180,by=30)
    at_y = seq(-180,180,by=30)
    # Plot the 2DHistogram
    image(hist_2d,col=r,cex.main=3,main='Q68L',axes=F)
    axis(1,lwd.ticks=2,at=at_x,labels=T,cex.axis=2)
    axis(2,lwd.ticks=2,at=at_y,labels=T,cex.axis=2)

生成的直方图如下所示。如何识别所有高密度区域(我在白色方块内标记)?这个问题的理想解决方案是一个函数,它为每个高密度区域抛出一个 (x,y) 范围,以便它可以应用于多个数据集。

提前致谢,如果您需要更多信息,请告诉我

4

1 回答 1

1

通过正确的数据表示,这可以通过聚类分析来完成。由于您不提供数据,我将用kde2d帮助页面上使用的数据来说明——间歇泉数据。该数据对“高密度”区域(例如您的示例图片)进行了非常清晰的分离,因此我将仅使用简单的 k-means 聚类。

library(MASS)
attach(geyser)
f2 <- kde2d(duration, waiting, n = 50, lims = c(0.5, 6, 40, 100),
            h = c(width.SJ(duration), width.SJ(waiting)) )
image(f2, zlim = c(0, 0.05))

热图

我们需要找到“热点”。为了了解应该将哪些值视为“高”,我们可以查看箱线图。

boxplot(as.vector(f2$z))

箱线图找出异常值

基于此,我会稍微随意使用 z 值大于 0.012 的点。您将需要针对您的特定问题进行调整。

Hot = which(f2$z > 0.012, arr.ind = TRUE)
HotPoints = data.frame(x=f2$x[Hot[,1]], y=f2$y[Hot[,2]])
plot(HotPoints, pch=20, xlim = c(0.5,6), ylim = c(40,100))

热点中的点

现在我们需要对这些点进行聚类并找到聚类的 x 和 y 范围。首先,我做的很简单,并表明结果是合理的。

KM3 = kmeans(scale(HotPoints), 3)
plot(HotPoints, pch=20, xlim = c(0.5,6), ylim = c(40,100))
for(i in 1:3) {
    Rx = range(HotPoints[KM3$cluster == i,1])
    Ry = range(HotPoints[KM3$cluster == i,2])
    polygon(c(Rx, rev(Rx)), rep(Ry, each=2))
}

热点区域的边界

我不确定您希望如何将结果呈现给您,但是将它们全部集中在一个地方的一种方法是:

XRanges = sapply(unique(KM3$cluster), 
    function(i) range(HotPoints[KM3$cluster == i,1]))
XRanges
         [,1]     [,2]     [,3]
[1,] 3.979592 3.867347 1.734694
[2,] 4.877551 4.316327 2.071429
YRanges = sapply(unique(KM3$cluster), 
    function(i) range(HotPoints[KM3$cluster == i,2]))
YRanges
         [,1]     [,2]     [,3]
[1,] 47.34694 70.61224 73.06122
[2,] 62.04082 87.75510 95.10204

这为三个集群中的每一个提供了 x 和 y 的最小值和最大值。

然而,我在这里做了一些选择,我想指出我仍然为你留下了一些工作。您还需要做的事情:
1. 您需要选择一个截止点,以获得一个集群需要多高的密度。
2. 给定截止点以上的点,您需要说明要生成多少个集群。

其余的机器都在那里。

于 2018-09-24T18:59:38.890 回答