1

Ciao,这是一个可复制的例子。

   df <- data.frame("STUDENT"=c(1,2,3,4,5),
                     "TEST1A"=c(NA,5,5,6,7),
                     "TEST2A"=c(NA,8,4,6,9),
                     "TEST3A"=c(NA,10,5,4,6),
                     "TEST1B"=c(5,6,7,4,1),
                     "TEST2B"=c(10,10,9,3,1),
                     "TEST3B"=c(0,5,6,9,NA),
                     "TEST1TOTAL"=c(NA,23,14,16,22),
                     "TEST2TOTAL"=c(10,16,15,12,NA))

我有列 STUDENT 到 TEST3B,并且想要创建 TEST1TOTAL TEST2TOTAL。TEST1TOTAL=TEST1A+TEST2A+TEST3A 以此类推为 TEST2TOTAL。如果 TEST1A TEST2A TEST3A 中缺少任何分数,则 TEST1TOTAL 为 NA。

这是我的尝试,但有没有减少编码行的解决方案?因为在这里我需要多次写出这条线,因为直到 TEST A 到 O。

TEST1TOTAL=rowSums(df[,c('TEST1A', 'TEST2A', 'TEST3A')], na.rm=TRUE)
4

3 回答 3

2

尝试:

library(dplyr)
df %>%
        mutate(TEST1TOTAL = TEST1A+TEST2A+TEST3A,
               TEST2TOTAL = TEST1B+TEST2B+TEST3B)

或者

df %>%
        mutate(TEST1TOTAL = rowSums(select(df, ends_with("A"))),
               TEST2TOTAL = rowSums(select(df, ends_with("B"))))
于 2018-09-18T16:49:58.933 回答
2

仅使用 R 基函数:

output <- data.frame(df1, do.call(cbind, lapply(c("A$", "B$"), function(x) rowSums(df1[, grep(x, names(df1))]))))

自定义列名:

> colnames(output)[(ncol(output)-1):ncol(output)] <- c("TEST1TOTAL", "TEST2TOTAL")
> output
  STUDENT TEST1A TEST2A TEST3A TEST1B TEST2B TEST3B TEST1TOTAL TEST2TOTAL
1       1     NA     NA     NA      5     10      0         NA         15
2       2      5      8     10      6     10      5         23         21
3       3      5      4      5      7      9      6         14         22
4       4      6      6      4      4      3      9         16         16
5       5      7      9      6      1      1     NA         22         NA
于 2018-09-18T16:54:23.613 回答
1

我认为对于您想要的,Jilber Urbina 的解决方案是可行的方法。为了完整起见(并且因为我学到了一些东西),这是一种通过测试编号获得任意数量测试的总分的简洁方法。

优点是您不需要为测试指定标识符(除了它们被编号或有尾随字母),相同的代码将适用于任意数量的测试。

library(tidyverse)

df_totals <- df %>%
    gather(test, score, -STUDENT) %>%                    # Convert from wide to long format
    mutate(test_num = paste0('TEST', ('[^0-9]', '', test),
                             'TOTAL'),                   # Extract test_number from variable
           test_let = gsub('TEST[0-9]*', '', test)) %>%  # Extract test_letter (optional)
    group_by(STUDENT, test_num) %>%                      # group by student + test
    summarize(score_tot = sum(score)) %>%                # Sum score by student/test
    spread(test_num, score_tot)                          # Spread back to wide format

df_totals

# A tibble: 5 x 4
# Groups:   STUDENT [5]
  STUDENT TEST1TOTAL TEST2TOTAL TEST3TOTAL
    <dbl>      <dbl>      <dbl>      <dbl>
1       1         NA         NA         NA
2       2         11         18         15
3       3         12         13         11
4       4         10          9         13
5       5          8         10         NA

如果您也想要个人分数,只需将总数与原始分数一起加入:

left_join(df, df_totals, by = 'STUDENT')
  STUDENT TEST1A TEST2A TEST3A TEST1B TEST2B TEST3B TEST1TOTAL TEST2TOTAL TEST3TOTAL
1       1     NA     NA     NA      5     10      0         NA         NA         NA
2       2      5      8     10      6     10      5         11         18         15
3       3      5      4      5      7      9      6         12         13         11
4       4      6      6      4      4      3      9         10          9         13
5       5      7      9      6      1      1     NA          8         10         NA
于 2018-09-18T17:05:14.820 回答