我有 3d 点云数据作为 .npy 文件和 .pts 数据。
要将这些数据用于 3d 分类神经网络,我必须将这些数据更改为 .h5 文件。
因此,首先我尝试使用 python 将 .npy 或 .pts 文件转换为 .ply 文件。
您能否参考我的示例代码或帮助我转换文件格式?
此外,我将非常感谢将 .ply 转换为 .h5 格式的方法。
对不起,我的英语水平很差。
我有 3d 点云数据作为 .npy 文件和 .pts 数据。
要将这些数据用于 3d 分类神经网络,我必须将这些数据更改为 .h5 文件。
因此,首先我尝试使用 python 将 .npy 或 .pts 文件转换为 .ply 文件。
您能否参考我的示例代码或帮助我转换文件格式?
此外,我将非常感谢将 .ply 转换为 .h5 格式的方法。
对不起,我的英语水平很差。
我希望这段代码能让你入门,它展示了如何从 npy(或随机点)创建一个 h5 文件。警告组和数据集的名称是任意的(这是一个示例)。
import os
import h5py
import numpy as np
# reading or creating an array of points numpy style
def create_or_load_random_points_npy(file_radix, size, min, max):
if os.path.exists(file_radix+'.npy'):
arr = np.load(file_radix+'.npy')
else:
arr = np.random.uniform(min, max, (size,3))
np.save(file_radix, arr)
return arr
# converting a numpy array (size,3) to a h5 file with two groups representng two way
# of serializing points
def convert_array_2_shades_of_grey(file_radix, arr):
file = h5py.File(file_radix + '.h5', 'w')
#only one dataset in a group
group = file.create_group("single_dataset")
group.attrs["desc"]=np.string_("random points in a single dataset")
dset=group.create_dataset("points", (len(arr), len(arr[0])), h5py.h5t.NATIVE_DOUBLE)
dset[...]=arr
#create a dataset for each coordinate
group = file.create_group("several_datasets")
group.attrs["desc"] = np.string_("random points in a several coordinates (one for each coord)")
dset = group.create_dataset("x", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 0]
dset = group.create_dataset("y", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 1]
dset = group.create_dataset("z", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 2]
# loads the h5 file, choose which way of storing you would like to deserialize
def load_random_points_h5(file_radix, single=True):
file = h5py.File(file_radix + '.h5', 'r')
if single:
group = file["single_dataset"]
print 'reading -> ', group.attrs["desc"]
dset=group["points"]
arr = dset[...]
else:
group = file["several_datasets"]
print 'reading -> ', group.attrs["desc"]
dset = group["x"]
arr = np.zeros((dset.size, 3))
arr[:, 0] = dset[...]
dset = group["y"]
arr[:, 1] = dset[...]
dset = group["z"]
arr[:, 2] = dset[...]
return arr
# And now we test !!!
file_radix = 'test'
# create or load the npy file
arr = create_or_load_random_points_npy(file_radix, 10000, -100.0, 100.0)
# Well, well, what is in the box ?
print arr
# converting numpy array to h5
convert_array_2_shades_of_grey(file_radix, arr)
# loading single dataset style.
arr = load_random_points_h5(file_radix, True)
# Well, well, what is in the box ?
print arr
# loading several dataset style.
arr = load_random_points_h5(file_radix, False)
# Well, well, what is in the box ?
print arr
要查看 h5 文件的内容,请下载HDFview。
也不要犹豫,看看h5py doc。
最后但并非最不重要的一点是,您可以随时在HDFgroup 论坛上向 HDF5 社区提问(他们提供像 SO,waouh !!! 之类的闪亮徽章)
更正/改进最佳答案
如果您有多个要转换为 .h5 的 .npy 文件,则将它们所在目录的路径写入变量NPY_DIRECTORY
:
from os import listdir
from os.path import isfile, join
import os
import h5py
import numpy as np
NPY_FILES_DIRECTORY = ""
filenames = [f for f in listdir(NPY_FILES_DIRECTORY) if isfile(join(NPY_FILES_DIRECTORY, f))]
# reading or creating an array of points numpy style
def create_or_load_random_points_npy(filename, size, min, max):
if os.path.exists(filename):
arr = np.load(filename)
else:
arr = np.random.uniform(min, max, (size,3))
np.save(filename, arr)
return arr
# converting a numpy array (size,3) to a h5 file with two groups representng two way
# of serializing points
def convert_array_2_shades_of_grey(filename, arr):
file = h5py.File(filename + '.h5', 'w')
#only one dataset in a group
group = file.create_group("single_dataset")
group.attrs["desc"]=np.string_("random points in a single dataset")
dset=group.create_dataset("points", (len(arr), len(arr[0])), h5py.h5t.NATIVE_DOUBLE)
dset[...]=arr
#create a dataset for each coordinate
group = file.create_group("several_datasets")
group.attrs["desc"] = np.string_("random points in a several coordinates (one for each coord)")
dset = group.create_dataset("x", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 0]
dset = group.create_dataset("y", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 1]
dset = group.create_dataset("z", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 2]
# loads the h5 file, choose which way of storing you would like to deserialize
def load_random_points_h5(filename, single=True):
file = h5py.File(filename + '.h5', 'r')
if single:
group = file["single_dataset"]
print('reading -> ', group.attrs["desc"])
dset=group["points"]
arr = dset[...]
else:
group = file["several_datasets"]
print('reading -> ', group.attrs["desc"])
dset = group["x"]
arr = np.zeros((dset.size, 3))
arr[:, 0] = dset[...]
dset = group["y"]
arr[:, 1] = dset[...]
dset = group["z"]
arr[:, 2] = dset[...]
return arr
# And now we test !!!
for filename in filenames:
# create or load the npy file
arr = create_or_load_random_points_npy(filename, 10000, -100.0, 100.0)
# Well, well, what is in the box ?
print(arr)
# converting numpy array to h5
convert_array_2_shades_of_grey(filename, arr)
# loading single dataset style.
arr = load_random_points_h5(filename, True)
# Well, well, what is in the box ?
print(arr)
# loading several dataset style.
arr = load_random_points_h5(filename, False)
# Well, well, what is in the box ?
print(arr)