我有带有以下描述的注释矩阵:3 个注释器,3 个类别,206 个主题
数据存储在 numpy.ndarray 变量 z 中:
array([[ 0., 2., 1.],
[ 0., 2., 1.],
[ 0., 2., 1.],
[ 0., 2., 1.],
[ 1., 1., 1.],
[ 0., 2., 1.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.],
[ 0., 3., 0.]])
可以看出,206 个注释中有 200 个是所有三个注释器的相同类别。现在实施 Fleiss Kappa:
from statsmodels.stats.inter_rater import fleiss_kappa
fleiss_kappa(z)
0.062106000466964177
尽管大多数主题(200/206)被注释为同一类别,为什么分数如此之低?