包中有一个get_dictionary()
函数fastrtext
,我以为它会返回字典中的所有单词。但是,当我设置wordNgrams
为 2 或 3 时,它返回的单词列表与设置为 1 时得到的单词列表完全相同wordNgrams
。有人能告诉我这里发生了什么吗?谢谢!
问问题
67 次
1 回答
0
当你在n -grams 中增加n时,你的 fasttext 分类算法对所有情况都在同一个字典上工作。然而,它不是对单独的单词(“I”、“love”、“NY”)进行训练,而是对单词的连接进行训练(“I love”、“love NY”——它是一个二元组)。为了演示,我在 5-gram(五角星;)上进行了训练,当然,-gram 中的索引n越大,计算时间越长,但句法结构被更好地捕获。
library(fastrtext)
data("train_sentences")
data("test_sentences")
# prepare data
tmp_file_model <- tempfile()
train_labels <- paste0("__label__", train_sentences[,"class.text"])
train_texts <- tolower(train_sentences[,"text"])
train_to_write <- paste(train_labels, train_texts)
train_tmp_file_txt <- tempfile()
writeLines(text = train_to_write, con = train_tmp_file_txt)
test_labels <- paste0("__label__", test_sentences[,"class.text"])
test_texts <- tolower(test_sentences[,"text"])
test_to_write <- paste(test_labels, test_texts)
# learn model 1 1-grams
library(microbenchmark)
microbenchmark(execute(commands = c("supervised", "-input", train_tmp_file_txt,
"-output", tmp_file_model, "-dim", 20, "-lr", 1,
"-epoch", 20, "-wordNgrams", 1, "-verbose", 1)), times = 5)
# mean time: 1.229228 seconds
model1 <- load_model(tmp_file_model)
# learn model 2 5-grams)
microbenchmark(execute(commands = c("supervised", "-input", train_tmp_file_txt,
"-output", tmp_file_model, "-dim", 20, "-lr", 1,
"-epoch", 20, "-wordNgrams", 5, "-verbose", 1)), times = 5)
# mean time: 2.659191
model2 <- load_model(tmp_file_model)
str(get_dictionary(model1))
# chr [1:5060] "the" "</s>" "of" "to" "and" "in" "a" "that" "is" "for" ...
str(get_dictionary(model2))
# chr [1:5060] "the" "</s>" "of" "to" "and" "in" "a" "that" "is" "for" ...
于 2018-08-13T21:10:35.077 回答