如何在不针对旧人物(旧课程)重新训练模型的情况下,在新人物(课程)上训练我的人脸识别系统?
我加载了谷歌的预训练模型 Resnet v1,以训练系统识别人物的面孔,结果我得到了一个分类器,可以对经过训练的人物进行分类。问题是,当我想在一个新人的脸上训练它们时,我必须同时在老人和新人的脸上训练模型,我想要的是在新人身上训练模型而不会失去对老人的训练
import argparse
import logging
import os
import pickle
import sys
import time
import numpy as np
import tensorflow as tf
from sklearn.svm import SVC
from tensorflow.python.platform import gfile
from lfw_input import filter_dataset, split_dataset, get_dataset
from medium_facenet_tutorial import lfw_input
logger = logging.getLogger(__name__)
def main(input_directory, model_path, classifier_output_path, batch_size, num_threads, num_epochs,
min_images_per_labels, split_ratio, is_train=True):
"""
Loads images from :param input_dir, creates embeddings using a model defined at :param model_path, and trains
a classifier outputted to :param output_path
:param input_directory: Path to directory containing pre-processed images
:param model_path: Path to protobuf graph file for facenet model
:param classifier_output_path: Path to write pickled classifier
:param batch_size: Batch size to create embeddings
:param num_threads: Number of threads to utilize for queuing
:param num_epochs: Number of epochs for each image
:param min_images_per_labels: Minimum number of images per class
:param split_ratio: Ratio to split train/test dataset
:param is_train: bool denoting if training or evaluate
"""
start_time = time.time()
with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess:
train_set, test_set = _get_test_and_train_set(input_directory, min_num_images_per_label=min_images_per_labels,
split_ratio=split_ratio)
if is_train:
images, labels, class_names = _load_images_and_labels(train_set, image_size=160, batch_size=batch_size,
num_threads=num_threads, num_epochs=num_epochs,
random_flip=True, random_brightness=True,
random_contrast=True)
else:
images, labels, class_names = _load_images_and_labels(test_set, image_size=160, batch_size=batch_size,
num_threads=num_threads, num_epochs=1)
_load_model(model_filepath=model_path)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embedding_layer = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
emb_array, label_array = _create_embeddings(embedding_layer, images, labels, images_placeholder,
phase_train_placeholder, sess)
coord.request_stop()
coord.join(threads=threads)
logger.info('Created {} embeddings'.format(len(emb_array)))
classifier_filename = classifier_output_path
if is_train:
_train_and_save_classifier(emb_array, label_array, class_names, classifier_filename)
else:
_evaluate_classifier(emb_array, label_array, classifier_filename)
logger.info('Completed in {} seconds'.format(time.time() - start_time))
def _get_test_and_train_set(input_dir, min_num_images_per_label, split_ratio=0.7):
"""
Load train and test dataset. Classes with < :param min_num_images_per_label will be filtered out.
:param input_dir:
:param min_num_images_per_label:
:param split_ratio:
:return:
"""
dataset = get_dataset(input_dir)
dataset = filter_dataset(dataset, min_images_per_label=min_num_images_per_label)
train_set, test_set = split_dataset(dataset, split_ratio=split_ratio)
return train_set, test_set
def _load_images_and_labels(dataset, image_size, batch_size, num_threads, num_epochs, random_flip=False,
random_brightness=False, random_contrast=False):
class_names = [cls.name for cls in dataset]
image_paths, labels = lfw_input.get_image_paths_and_labels(dataset)
images, labels = lfw_input.read_data(image_paths, labels, image_size, batch_size, num_epochs, num_threads,
shuffle=False, random_flip=random_flip, random_brightness=random_brightness,
random_contrast=random_contrast)
return images, labels, class_names
def _load_model(model_filepath):
"""
Load frozen protobuf graph
:param model_filepath: Path to protobuf graph
:type model_filepath: str
"""
model_exp = os.path.expanduser(model_filepath)
if os.path.isfile(model_exp):
logging.info('Model filename: %s' % model_exp)
with gfile.FastGFile(model_exp, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
else:
logger.error('Missing model file. Exiting')
sys.exit(-1)
def _create_embeddings(embedding_layer, images, labels, images_placeholder, phase_train_placeholder, sess):
"""
Uses model to generate embeddings from :param images.
:param embedding_layer:
:param images:
:param labels:
:param images_placeholder:
:param phase_train_placeholder:
:param sess:
:return: (tuple): image embeddings and labels
"""
emb_array = None
label_array = None
try:
i = 0
while True:
batch_images, batch_labels = sess.run([images, labels])
logger.info('Processing iteration {} batch of size: {}'.format(i, len(batch_labels)))
emb = sess.run(embedding_layer,
feed_dict={images_placeholder: batch_images, phase_train_placeholder: False})
emb_array = np.concatenate([emb_array, emb]) if emb_array is not None else emb
label_array = np.concatenate([label_array, batch_labels]) if label_array is not None else batch_labels
i += 1
except tf.errors.OutOfRangeError:
pass
return emb_array, label_array
def _train_and_save_classifier(emb_array, label_array, class_names, classifier_filename_exp):
logger.info('Training Classifier')
model = SVC(kernel='linear', probability=True, verbose=False)
model.fit(emb_array, label_array)
with open(classifier_filename_exp, 'wb') as outfile:
pickle.dump((model, class_names), outfile)
logging.info('Saved classifier model to file "%s"' % classifier_filename_exp)
def _evaluate_classifier(emb_array, label_array, classifier_filename):
logger.info('Evaluating classifier on {} images'.format(len(emb_array)))
if not os.path.exists(classifier_filename):
raise ValueError('Pickled classifier not found, have you trained first?')
with open(classifier_filename, 'rb') as f:
model, class_names = pickle.load(f)
predictions = model.predict_proba(emb_array, )
best_class_indices = np.argmax(predictions, axis=1)
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
for i in range(len(best_class_indices)):
print('%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i]))
accuracy = np.mean(np.equal(best_class_indices, label_array))
print('Accuracy: %.3f' % accuracy)
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument('--model-path', type=str, action='store', dest='model_path',
help='Path to model protobuf graph')
parser.add_argument('--input-dir', type=str, action='store', dest='input_dir',
help='Input path of data to train on')
parser.add_argument('--batch-size', type=int, action='store', dest='batch_size',
help='Input path of data to train on', default=128)
parser.add_argument('--num-threads', type=int, action='store', dest='num_threads', default=16,
help='Number of threads to utilize for queue')
parser.add_argument('--num-epochs', type=int, action='store', dest='num_epochs', default=3,
help='Path to output trained classifier model')
parser.add_argument('--split-ratio', type=float, action='store', dest='split_ratio', default=0.7,
help='Ratio to split train/test dataset')
parser.add_argument('--min-num-images-per-class', type=int, action='store', default=10,
dest='min_images_per_class', help='Minimum number of images per class')
parser.add_argument('--classifier-path', type=str, action='store', dest='classifier_path',
help='Path to output trained classifier model')
parser.add_argument('--is-train', action='store_true', dest='is_train', default=False,
help='Flag to determine if train or evaluate')
args = parser.parse_args()
main(input_directory=args.input_dir, model_path=args.model_path, classifier_output_path=args.classifier_path,
batch_size=args.batch_size, num_threads=args.num_threads, num_epochs=args.num_epochs,
min_images_per_labels=args.min_images_per_class, split_ratio=args.split_ratio, is_train=args.is_train)