这行代码不起作用。问题是当我添加此 geom_text 行时,该行旨在过滤掉数据的某些点并标记它们。
这是代码:
ggplot(data=bg_total_df, aes(x = bg_total_num, y = bg_total$bloodGlucose)) +
geom_text(data = subset(bg_total, bloodGlucose < 78), label = bg_total$bloodGlucose)+
geom_point(color = ifelse(bg_total$bloodGlucose < 78, "red", "blue"))
错误:美学长度必须为 1 或与数据 (16) 相同:x, y
代码一起工作得ggplot + geom_point
很好。正是在添加 geom_text 代码时出现此错误。
我一直在尝试修复此 geom_text 代码集,以便图形的异常值(bloodGlucose
小于 78 且大于 271)将变为红色并标有它们的数量。我编写的代码是我第一次尝试从小于 78 的值开始。
这是设置df的代码。
bg_total <- filter(csutrauma.data, bloodGlucose >= 0)
bg_total_num <- 1:328
bg_total_df <- data.frame(bg_total_num, bg_total$bloodGlucose)
bg_total$bloodGlucose (these are the filtered out blood glucose data) <- c(118.0, 72.0, 207.0, 107.0, 99.0, 106.0, 98.0, 89.0, 114.0, 98.0, 109.0, 114.0, 85.0, 138.0, 100.0, 118.0, 99.0, 104.0, 80.0, 105.0, 113.0, 89.0, 116.0, 121.0, 120.0, 109.0, 97.0, 100.0, 112.0, 133.0, 95.0, 107.0, 91.0, 133.0, 80.0, 114.0, 118.0, 109.0, 111.0, 115.0, 122.0, 90.0, 114.0, 93.0, 106.0, 555.0, 106.0, 106.0, 119.0, 95.0, 153.0, 118.0, 75.0, 112.0, 102.0, 103.0, 150.0, 109.0, 110.0, 206.0, 103.0, 266.0, 103.0, 104.0, 119.0, 106.0, 94.0, 94.0, 119.0, 120.0, 96.0, 252.0, 121.0, 126.0, 317.0, 170.0, 119.0, 98.0, 124.0, 137.0, 255.0, 136.0, 126.0, 0.0, 117.0, 134.0, 133.0, 102.0, 150.0, 232.0, 132.0, 112.0, 78.0, 155.0, 113.0, 122.0, 153.0, 96.0, 83.0, 154.0, 41.0, 91.0, 120.0, 134.0, 126.0, 168.0, 196.0, 125.0, 105.0, 105.0, 93.0, 88.0, 89.0, 93.0, 120.0, 93.0, 93.0, 135.0, 102.0, 86.0, 93.0, 141.0, 150.0, 96.0, 101.0, 61.0, 110.0, 81.0, 97.0, 140.0, 95.0, 106.0, 117.0, 119.0, 139.0, 110.0, 101.0, 128.0, 107.0, 160.0, 122.0, 135.0, 59.0, 102.0, 72.0, 145.0, 104.0, 134.0, 113.0, 105.0, 107.0, 100.0, 65.0, 100.0, 136.0, 110.0, 159.0, 107.0, 115.0, 101.0, 493.0, 78.0, 84.0, 229.0, 102.0, 172.0, 139.0, 102.0, 541.0, 94.0, 91.0, 88.0, 181.0, 129.0, 123.0, 108.0, 115.0, 97.0, 159.0, 124.0, 118.0, 138.0, 182.0, 115.0, 119.0, 101.0, 99.0, 88.0, 134.0, 104.0, 152.0, 130.0, 90.0, 100.0, 157.0, 112.0, 120.0, 110.0, 112.0, 104.0, 71.0, 120.0, 254.0, 118.0, 119.0, 94.0, 104.0, 183.0, 227.0, 210.0, 150.0, 93.0, 91.0, 99.0, 86.0, 90.0, 115.0, 247.0, 111.0, 109.0, 90.0, 113.0, 98.0, 80.0, 145.0, 101.0, 94.0, 94.0, 138.0, 241.0, 3.8, 106.0, 93.0, 96.0, 105.0, 181.0, 95.0, 82.0, 82.0, 18.0, 148.0, 175.0, 323.0, 118.0, 89.0, 100.0, 117.0, 175.0, 200.0, 147.0, 108.0, 210.0, 123.0, 136.0, 107.0, 117.0, 116.0, 154.0, 56.0, 102.0, 105.0, 100.0, 108.0, 226.0, 149.0, 86.0, 116.0, 140.0, 133.0, 121.0, 122.0, 98.0, 95.0, 118.0, 114.0, 113.0, 94.0, 70.0, 52.0, 110.0, 189.0, 82.0 200.0, 89.0, 95.0, 93.0, 111.0, 117.0, 110.0, 156.0, 87.0, 136.0, 336.0, 112.0, 128.0, 92.0, 61.0, 130.0, 119.0, 152.0, 90.0, 111.0, 116.0, 133.0, 94.0, 326.0, 121.0, 119.0 121.0 152.0, 113.0, 128.0, 123.0, 155.0, 176.0, 101.0, 248.0, 64.0, 90.0, 105.0, 235.0, 124.0, 142.0, 388.0, 118.0, 202.0, 156.0, 195.0)
先感谢您。