对于命名实体识别问题,
对句子进行标记后,如何设置列?看起来文档中的一列是 POS 标签,但是这些来自哪里?我应该自己标记 POS 还是有生成这些的工具?
下一列代表什么?像PERSON,LOCATION等这样的类?它必须采用任何特定格式吗?
是否有完整的 NER 训练文件和模板示例?
您可以在此处的 crf++ 存储库中找到示例训练和测试数据。名词短语分块的训练数据如下所示:
Confidence NN B
in IN O
the DT B
pound NN I
is VBZ O
widely RB O
expected VBN O
... etc ...
这些列是任意的,因为它们可以是任何东西。CRF++ 要求每行具有相同数量的列(或为空白,以分隔句子),并非所有 CRF 包都要求这样做。您必须自己提供数据值;它们是分类器从中学习的数据。
虽然任何内容都可以放在各个列中,但您应该知道的一个约定是IOB Format。为了处理潜在的多令牌实体,您将它们标记为内部/外部/开始。举个例子可能会有用。假设我们正在训练一个分类器来检测名称 - 为了紧凑,我将在一行中写下:
John/B Smith/I ate/O an/O apple/O ./O
在柱状格式中,它看起来像这样:
John B
Smith I
ate O
an O
apple O
. O
使用这些标签,B
(开始)意味着单词是实体中的第一个,I
意味着单词在实体内部(它位于B
标签之后),并且O
意味着单词不是实体。如果您有不止一种类型的实体,则通常使用类似B-PERSON
或的标签I-PLACE
。
使用 IOB 标记的原因是分类器可以学习开始、继续和结束实体的不同转换概率。因此,如果您正在学习公司名称,它将了解到Inc./I-COMPANY
通常会转换为O
标签,因为Inc.
通常是公司名称的最后一部分。
模板是另一个问题,CRF++ 使用自己的特殊格式,但同样,您可以查看源代码分发中的示例。另请参阅此问题。
要回答对我的回答的评论,您可以使用任何 POS 标记器生成 POS 标签。您甚至根本不需要提供 POS 标签,尽管它们通常很有帮助。其他标签可以手动添加或自动添加;例如,您可以使用已知名词列表作为起点。这是一个将spaCy用于简单名称检测器的示例:
import spacy
nlp = spacy.load('en')
names = ['John', 'Jane', etc...]
text = nlp("John ate an apple.")
for word in text:
person = 'O' # default not a person
if str(word) in names:
person = 'B-PERSON'
print(str(word), word.pos_, person)