我一直在探索使用 AWS Rekognition 和 Google 的 Vision 来获取图像/视频中对象的数量,但一直未能找到出路。尽管在Google 的 Vision网站上,他们确实有一个“来自图像的洞察”部分,显然该数量似乎已被捕获。
有人可以建议是否可以使用 Google 的 Vision 或任何其他有助于获取图像中对象数量的 API。谢谢
编辑:
例如 - 对于下面显示的图像,返回的计数应该是 10 辆汽车。正如 Torry Yang 在他的回答中所建议的那样,标签注释计数可以给出所需的数字,但似乎并非如此,因为标签注释的计数是 18。返回的对象有点像这样。
"labelAnnotations": [
{
"mid": "/m/0k4j",
"description": "car",
"score": 0.98658943,
"topicality": 0.98658943
},
{
"mid": "/m/012f08",
"description": "motor vehicle",
"score": 0.9631113,
"topicality": 0.9631113
},
{
"mid": "/m/07yv9",
"description": "vehicle",
"score": 0.9223521,
"topicality": 0.9223521
},
{
"mid": "/m/01w71f",
"description": "personal luxury car",
"score": 0.8976857,
"topicality": 0.8976857
},
{
"mid": "/m/068mqj",
"description": "automotive design",
"score": 0.8736646,
"topicality": 0.8736646
},
{
"mid": "/m/012mq4",
"description": "sports car",
"score": 0.8418799,
"topicality": 0.8418799
},
{
"mid": "/m/01lcwm",
"description": "luxury vehicle",
"score": 0.7761523,
"topicality": 0.7761523
},
{
"mid": "/m/06j11d",
"description": "performance car",
"score": 0.76816446,
"topicality": 0.76816446
},
{
"mid": "/m/03vnt4",
"description": "mid size car",
"score": 0.75732976,
"topicality": 0.75732976
},
{
"mid": "/m/03vntj",
"description": "full size car",
"score": 0.6855145,
"topicality": 0.6855145
},
{
"mid": "/m/0h8ls87",
"description": "automotive exterior",
"score": 0.66056395,
"topicality": 0.66056395
},
{
"mid": "/m/014f__",
"description": "supercar",
"score": 0.592226,
"topicality": 0.592226
},
{
"mid": "/m/02swz_",
"description": "compact car",
"score": 0.5807265,
"topicality": 0.5807265
},
{
"mid": "/m/0h6dlrc",
"description": "bmw",
"score": 0.5801241,
"topicality": 0.5801241
},
{
"mid": "/m/01h80k",
"description": "muscle car",
"score": 0.55745816,
"topicality": 0.55745816
},
{
"mid": "/m/021mp2",
"description": "sedan",
"score": 0.5522745,
"topicality": 0.5522745
},
{
"mid": "/m/0369ss",
"description": "city car",
"score": 0.52938646,
"topicality": 0.52938646
},
{
"mid": "/m/01d1dj",
"description": "coupé",
"score": 0.50642073,
"topicality": 0.50642073
}
]