2

我有一个看起来像这样的元组列表:

>>> y
[(0,1,2,3,4,...,10000), ('a', 'b', 'c', 'd', ...), (3.2, 4.1, 9.2, 12., ...), ]

etc.y有 7 个元组,每个元组有 10,000 个值。给定元组的所有 10,000 个值都是相同的 dtype,我也有这些 dtype 的列表:

>>>dt
[('0', dtype('int64')), ('1', dtype('<U')), ('2', dtype('<U')), ('3', dtype('int64')), ('4', dtype('<U')), ('5', dtype('float64')), ('6', dtype('<U'))]

我的意图是做类似的事情x = np.array(y, dtype=dt),但是当我这样做时,我收到以下错误:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: could not assign tuple of length 10000 to structure with 7 fields.

我知道这是因为 dtype 说元组中的第一个值必须是 int64,第二个值必须是字符串,依此类推,而对于具有 10,000 个值的元组,我只有 7 个 dtype。

我如何与代码沟通,我的意思是第一个元组的所有值都是 int64s,第二个元组的所有值都是字符串,等等?

我也尝试过y成为列表列表而不是元组列表:

>>>y
[[0,1,2,3,4,...,10000], ['a', 'b', 'c', 'd', ...), ...] 

等,由于与上述相同的原因,我收到错误:

>>> x = np.array(y, dtype=dt)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'Supplier#000000001'

任何帮助表示赞赏!

编辑:我的目标是让 x 成为一个 numpy 数组。

4

2 回答 2

1

使用zip*成语“转置”您的元组列表:

In [150]: alist = [(0,1,2,3,4),tuple('abcde'),(.1,.2,.4,.6,.8)]
In [151]: alist
Out[151]: [(0, 1, 2, 3, 4), ('a', 'b', 'c', 'd', 'e'), (0.1, 0.2, 0.4, 0.6, 0.8)]
In [152]: dt = np.dtype([('0',int),('1','U3'),('2',float)])


In [153]: list(zip(*alist))
Out[153]: [(0, 'a', 0.1), (1, 'b', 0.2), (2, 'c', 0.4), (3, 'd', 0.6), (4, 'e', 0.8)]
In [154]: np.array(_, dt)
Out[154]: 
array([(0, 'a', 0.1), (1, 'b', 0.2), (2, 'c', 0.4), (3, 'd', 0.6),
       (4, 'e', 0.8)], dtype=[('0', '<i8'), ('1', '<U3'), ('2', '<f8')])

还有一个recarray创建者获取数组列表:

In [160]: np.rec.fromarrays(alist,dtype=dt)
Out[160]: 
rec.array([(0, 'a', 0.1), (1, 'b', 0.2), (2, 'c', 0.4), (3, 'd', 0.6),
           (4, 'e', 0.8)],
          dtype=[('0', '<i8'), ('1', '<U3'), ('2', '<f8')])

还有一个numpy.lib.recfunctions具有功能的模块(单独导入)recarray, structured array


如评论:

In [169]: np.fromiter(zip(*alist),dt)
Out[169]: 
array([(0, 'a', 0.1), (1, 'b', 0.2), (2, 'c', 0.4), (3, 'd', 0.6),
       (4, 'e', 0.8)], dtype=[('0', '<i8'), ('1', '<U3'), ('2', '<f8')])
于 2018-06-05T22:47:01.360 回答
0

可能不是最优雅的解决方案,但列表理解有效:

x = [np.array(tup, dtype=typ[1]) for tup, typ in zip(y, dt)]
于 2018-06-05T17:45:51.350 回答