我在 R 中使用 gstat 包来生成顺序高斯模拟。我的电脑有 4 个内核,我尝试使用并行包按照Guzmán提供的脚本来并行化 krige() 函数,以回答问题如何在 R 中实现并行克里金法以加快进程?.
然而,由此产生的模拟与当时仅使用一个内核(无并行化)的模拟不同。它看起来是一个几何问题,但我不知道如何解决它。
接下来我将提供一个生成 2 个模拟的示例(使用 4 个内核)。您会看到,运行代码后,从并行化导出的模拟地图显示了一些伪影(如垂直线),并且与当时仅使用一个内核的地图不同。
代码需要库gstat
、sp
、raster
和。如果任何一行不起作用,请先运行。parallel
spatstat
library()
install.packages()
library(gstat)
library(sp)
library(raster)
library(parallel)
library(spatstat)
# create a regular grid
nx=100 # number of columns
ny=100 # number of rows
srgr <- expand.grid(1:ny, nx:1)
names(srgr) <- c('x','y')
gridded(srgr)<-~x+y
# generate a spatial process (unconditional simulation)
g<-gstat(formula=z~x+y, locations=~x+y, dummy=T, beta=15, model=vgm(psill=3, range=10, nugget=0,model='Exp'), nmax=20)
sim <- predict(g, newdata=srgr, nsim=1)
r<-raster(sim)
# generate sample data (Poisson process)
int<-0.02
rpp<-rpoispp(int,win=owin(c(0,nx),c(0,ny)))
df<-as.data.frame(rpp)
coordinates(df)<-~x+y
# assign raster values to sample data
dfpp <-raster::extract(r,df,df=TRUE)
smp<-cbind(coordinates(df),dfpp)
smp<-smp[complete.cases(smp), ]
coordinates(smp)<-~x+y
# fit variogram to sample data
vs <- variogram(sim1~1, data=smp)
m <- fit.variogram(vs, vgm("Exp"))
plot(vs, model = m)
# generate 2 conditional simulations with one core processor
one <- krige(formula = sim1~1, locations = smp, newdata = srgr, model = m,nmax=12,nsim=2)
# plot simulation 1 and 2: statistics (min, max) are ok, simulations are also ok.
spplot(one["sim1"], main = "conditional simulation")
spplot(one["sim2"], main = "conditional simulation")
# generate 2 conditional with parallel processing
no_cores<-detectCores()
cl<-makeCluster(no_cores)
parts <- split(x = 1:length(srgr), f = 1:no_cores)
clusterExport(cl = cl, varlist = c("smp", "srgr", "parts","m"), envir = .GlobalEnv)
clusterEvalQ(cl = cl, expr = c(library('sp'), library('gstat')))
par <- parLapply(cl = cl, X = 1:no_cores, fun = function(x) krige(formula=sim1~1, locations=smp, model=m, newdata=srgr[parts[[x]],], nmax=12, nsim=2))
stopCluster(cl)
# merge all parts
mergep <- maptools::spRbind(par[[1]], par[[2]])
mergep <- maptools::spRbind(mergep, par[[3]])
mergep <- maptools::spRbind(mergep, par[[4]])
# create SpatialPixelsDataFrame from mergep
mergep <- SpatialPixelsDataFrame(points = mergep, data = mergep@data)
# plot mergep: statistics (min, max) are ok, but simulated maps show "vertical lines". i don't understand why.
spplot(mergep[1], main = "conditional simulation")
spplot(mergep[2], main = "conditional simulation")