0

我是一名使用 Python 编码的学生,并试图解决以下延迟微分方程:

<a href="http://www.codecogs.com/eqnedit.php?latex=\left\{\begin{array}{l}\dot{v}(t)=&space;y(t)&space;\\&space;\dot{y}(t)=&space;\frac{a_1\alpha}{\omega_1}.y(t-\tau)).\{1-tanh^2[v(t-\tau)]\}&space;-&space;v(t)-\frac{1}{Q_1}.y(t)&space;\end{array}\right.\\&space;\\&space;(a_1&space;=&space;70,&space;\quad&space;Q_1&space;=&space;50,&space;\quad&space;\omega_1&space;=&space;2260,&space;\quad&space;\alpha&space;=&space;10,&space;\quad&space;\tau&space;\in&space;[0,8e-3])" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\left\{\begin{array}{l}\dot{v}(t)=&space;y(t)&space;\\&space;\dot{y}(t)=&space;\frac{a_1\alpha}{\omega_1}.y(t-\tau)).\{1-tanh^2[v(t-\tau)]\}&space;-&space;v(t)-\frac{1}{Q_1}.y(t)&space;\end{array}\right.\\&space;\\&space;(a_1&space;=&space;70,&space;\quad&space;Q_1&space;=&space;50,&space;\quad&space;\omega_1&space;=&space;2260,&space;\quad&space;\alpha&space;=&space;10,&space;\quad&space;\tau&space;\in&space;[0,8e-3])" title="\left\{\begin{array}{l}\dot{v}(t)= y(t) \\ \dot{y}(t)= \frac{a_1\alpha}{\omega_1}.y(t-\tau)).\{1-tanh^2[v(t-\tau)]\} - v(t)-\frac{1}{Q_1}.y(t) \end{array}\right.\\ \\ (a_1 = 70, \quad Q_1 = 50, \quad \omega_1 = 2260, \quad \alpha = 10, \quad \tau \in [0,8e-3])" /></a>

我想使用JiTCDDE,但没有成功找到适应系统的方法,即使在研究了模块文档中的示例之后也是如此。我遇到的主要问题是我不明白如何处理同时包含yv的第二个方程。

目标是绘制系统的分岔图(v作为τ的函数)。我是否使用了错误的工具?或者有没有办法在我的情况下使用 JiTCDDE?

4

1 回答 1

0

y您可以通过使用 的第一个参数来指示您要使用的组件来实现多维系统。此外,您对微分方程右侧的定义必须有两个分量。

例如,您可以按如下方式实现您的示例:

from jitcdde import jitcdde, y, t
f = [
        y(1),
        a*α/ω*y(1,t-τ)*(1-symengine.tanh(y(0,t-τ))**2)-y(0)-y(1)/Q
    ]

DDE = jitcdde(f)

现在方程中的v是什么y(0)y变成了y(1)

在随附的论文预印本)中有一个二阶微分方程的示例,例如您的。

于 2018-05-12T14:18:46.297 回答