5

为什么情节的顶部被切断,我该如何解决?我增加了利润,但没有任何区别。

在此处输入图像描述

参见 1854 年的曲线,位于左侧驼峰的最顶部。看起来驼峰顶部的线条更细。对我来说,将大小更改为 0.8 并没有帮助。

这是生成此示例所需的代码:

library(tidyverse)
library(ggridges)

t2 <-   structure(list(Date = c("1853-01", "1853-02", "1853-03", "1853-04", 
                                "1853-05", "1853-06", "1853-07", "1853-08", "1853-09", "1853-10", 
                                "1853-11", "1853-12", "1854-01", "1854-02", "1854-03", "1854-04", 
                                "1854-05", "1854-06", "1854-07", "1854-08", "1854-09", "1854-10", 
                                "1854-11", "1854-12"), t = c(-5.6, -5.3, -1.5, 4.9, 9.8, 17.9, 
                                                             18.5, 19.9, 14.8, 6.2, 3.1, -4.3, -5.9, -7, -1.3, 4.1, 10, 16.8, 
                                                             22, 20, 16.1, 10.1, 1.8, -5.6), year = c("1853", "1853", "1853", 
                                                                                                      "1853", "1853", "1853", "1853", "1853", "1853", "1853", "1853", 
                                                                                                      "1853", "1854", "1854", "1854", "1854", "1854", "1854", "1854", 
                                                                                                      "1854", "1854", "1854", "1854", "1854")), row.names = c(NA, -24L
                                                                                                      ), class = c("tbl_df", "tbl", "data.frame"), .Names = c("Date", 
                                                                                                                                                              "t", "year"))

# Density plot -----------------------------------------------
jj <- ggplot(t2, aes(x = t, y = year)) +
  stat_density_ridges(
    geom = "density_ridges_gradient",
    quantile_lines = TRUE,
    size = 1,
    quantiles = 2) +
  theme_ridges() +
  theme(
    plot.margin = margin(t = 1, r = 1, b = 0.5, l = 0.5, "cm") 
  )


# Build ggplot and extract data
d <- ggplot_build(jj)$data[[1]]

# Add geom_ribbon for shaded area
jj +
  geom_ribbon(
    data = transform(subset(d, x >= 20), year = group),
    aes(x, ymin = ymin, ymax = ymax, group = group),
    fill = "red",
    alpha = 0.5) 
4

2 回答 2

9

一些评论者说他们无法重现这个问题,但它确实存在。更容易看出我们是否增加了线的大小:

library(ggridges)
library(ggplot2)
ggplot(iris, aes(x = Sepal.Length, y = Species)) + 
  geom_density_ridges(size = 2)

在此处输入图像描述

这是 ggplot 如何扩展离散尺度的属性。密度线超出了 ggplot 使用的正常加性扩展值(其大小是从“setosa”基线到 x 轴的距离)。在这种情况下, ggplot 会进一步扩展轴,但只能精确到最大数据点。因此,线的一半在该最大点处延伸到绘图区域之外,并且那一半被切断。

即将推出的 ggplot2 2.3.0(目前可通过 github 获得)将有两种新的方法来处理这个问题。首先,您可以clip = "off"在坐标系中设置允许线条延伸到绘图范围之外:

ggplot(iris, aes(x = Sepal.Length, y = Species)) + 
  geom_density_ridges(size = 2) +
  coord_cartesian(clip = "off")

在此处输入图像描述

其次,您可以分别扩展刻度的底部和顶部。对于离散尺度,我更喜欢加法扩展,我认为在这种情况下,我们想让下限值小于默认值,但上限值要大一些:

ggplot(iris, aes(x = Sepal.Length, y = Species)) + 
  geom_density_ridges(size = 2) +
  scale_y_discrete(expand = expand_scale(add = c(0.2, 1.5)))

在此处输入图像描述

于 2018-05-05T02:41:58.450 回答
2

添加

scale_y_discrete(expand = c(0.01, 0))

成功了。

于 2018-04-27T23:29:15.040 回答