使用 Evers 博士的建议用 ggridges 对密度曲线下的区域进行阴影效果很好。但是,我发现密度曲线可能具有欺骗性,因为它们暗示数据存在,而数据不存在。因此,我想我会用普通的直方图尝试这种着色技术。
但是,当我尝试将它与直方图一起使用时,阴影有点偏离。为什么是这样?
library(tidyverse)
install.packages("ggridges", dependencies=TRUE) # there are many
library(ggridges)
t2 <- structure(list(Date = c("1853-01", "1853-02", "1853-03", "1853-04",
"1853-05", "1853-06", "1853-07", "1853-08", "1853-09", "1853-10",
"1853-11", "1853-12", "1854-01", "1854-02", "1854-03", "1854-04",
"1854-05", "1854-06", "1854-07", "1854-08", "1854-09", "1854-10",
"1854-11", "1854-12"), t = c(-5.6, -5.3, -1.5, 4.9, 9.8, 17.9,
18.5, 19.9, 14.8, 6.2, 3.1, -4.3, -5.9, -7, -1.3, 4.1, 10, 16.8,
22, 20, 16.1, 10.1, 1.8, -5.6), year = c("1853", "1853", "1853",
"1853", "1853", "1853", "1853", "1853", "1853", "1853", "1853",
"1853", "1854", "1854", "1854", "1854", "1854", "1854", "1854",
"1854", "1854", "1854", "1854", "1854")), row.names = c(NA, -24L
), class = c("tbl_df", "tbl", "data.frame"), .Names = c("Date",
"t", "year"))
gg <- ggplot(t2, aes(x = t, y = year)) +
geom_density_ridges(stat = "binline", bins = 10, scale = 0.8,
draw_baseline = TRUE) +
theme_ridges()
# Build ggplot and extract data
d <- ggplot_build(gg)$data[[1]]
# Add geom_ribbon for shaded area
gg +
geom_ribbon(
data = transform(subset(d, x >= 10), year = group),
aes(x, ymin = ymin, ymax = ymax, group = group),
fill = "red",
alpha = 1.0)