1

我有一个包含 5 个值的数组,由 4 个值和一个索引组成。我沿着索引对数组进行排序和拆分。这导致我分裂具有不同长度的矩阵。从这里开始,我想计算每个拆分的第四个值的均值、方差和前 3 个值的协方差。我目前的方法适用于 for 循环,我想用矩阵运算替换它,但我正在为我的矩阵的不同大小而苦苦挣扎。

import numpy as np
A = np.random.rand(10,5) 
A[:,-1] = np.random.randint(4, size=10)
sorted_A = A[np.argsort(A[:,4])]
splits = np.split(sorted_A, np.where(np.diff(sorted_A[:,4]))[0]+1)

我当前的 for 循环如下所示:

result = np.zeros((len(splits), 5))
for idx, values in enumerate(splits):
    if(len(values))>0:
        result[idx, 0] = np.mean(values[:,3])
        result[idx, 1] = np.var(values[:,3])
        result[idx, 2:5] = np.cov(values[:,0:3].transpose(), ddof=0).diagonal()
    else:
        result[idx, 0] = values[:,3]

我尝试使用掩码数组但没有成功,因为我无法以正确的形式将矩阵加载到掩码数组中。也许有人知道如何做到这一点或有不同的建议。

4

1 回答 1

2

您可以np.add.reduceat按如下方式使用:

>>> idx = np.concatenate([[0], np.where(np.diff(sorted_A[:,4]))[0]+1, [A.shape[0]]])
>>> result2 = np.empty((idx.size-1, 5))
>>> result2[:, 0] = np.add.reduceat(sorted_A[:, 3], idx[:-1]) / np.diff(idx)
>>> result2[:, 1] = np.add.reduceat(sorted_A[:, 3]**2, idx[:-1]) / np.diff(idx) - result2[:, 0]**2
>>> result2[:, 2:5] = np.add.reduceat(sorted_A[:, :3]**2, idx[:-1], axis=0) / np.diff(idx)[:, None]
>>> result2[:, 2:5] -= (np.add.reduceat(sorted_A[:, :3], idx[:-1], axis=0) / np.diff(idx)[:, None])**2
>>> 
>>> np.allclose(result, result2)
True

请注意,协方差矩阵的对角线只是极大地简化了此向量化的方差。

于 2018-04-20T06:33:17.863 回答