8

我有一组希尔伯特值(从希尔伯特曲线起点到给定点的长度)。

将这些值转换为 3D 点的最佳方法是什么?原始希尔伯特曲线不是 3D 的,所以我想我必须自己选择我需要的希尔伯特曲线等级。我确实有总曲线长度(即集合中的最大值)。

也许有一个现有的实现?一些允许我使用希尔伯特曲线/值的库?语言无关紧要。

4

2 回答 2

3

不是关于 3D 转换的答案,但这里有一个很好的算法和对希尔伯特值的讨论带有空间填充曲线的二维空间散列

来自麻省理工学院

4 algorithms for the n-dimensional Hilbert Space-Filling Curve

* A. R. Butz, "Alternative Algorithm for Hilbert's Space-Filling Curve",
  IEEE Trans. Comp., April, 1971, pp 424-426. [Butz 1971]

* S. W. Thomas, "hilbert.c" in the Utah Raster Toolkit circa 1993,
  http://web.mit.edu/afs/athena/contrib/urt/src/urt3.1/urt-3.1b.tar.gz

* D. Moore, Fast Hilbert Curves in C, without Recursion

* J.K.Lawder, Calculation of Mappings Between One and n-dimensional Values Using the Hilbert Space-filling Curve, [JL1_00]
于 2009-01-31T22:32:06.700 回答
1

如果我的问题是正确的,那么您l与 Hilbert 3D 曲线的起点有一些曲线长度距离,并且想要获得与该点相对应的坐标。

如果您将整个3D 希尔伯特曲线(覆盖单位立方体)预先生成为折线,则所有排序的点在前一个点和下一个点之间的距离相同。因此,您可以使用分段线性插值来计算您的点。

这就是我在C++中生成和渲染2D/3D 希尔伯特曲线的方式:

//---------------------------------------------------------------------------
#ifndef _Hilbert_vector_h
#define _Hilbert_vector_h
//---------------------------------------------------------------------------
#include "list.h"
//---------------------------------------------------------------------------
void Hilbert2D(List<double> &pnt,double x,double y,double z,double a,int n)
    {
    int i,j,m;
    double x0,y0,x1,y1,q;
    for (m=4*3,i=1,j=2;j<=n;j++,i+=i+1) m*=4; a/=i; // m = needed size of pnt[]
    pnt.num=0;
    // init generator
          pnt.add(x); pnt.add(y); pnt.add(z);
    y+=a; pnt.add(x); pnt.add(y); pnt.add(z);
    x+=a; pnt.add(x); pnt.add(y); pnt.add(z);
    y-=a; pnt.add(x); pnt.add(y); pnt.add(z);
    x0=x-0.5*a; // center of generator
    y0=y+0.5*a;
    // iterative subdivision
    for (j=2;j<=n;j++)
        {
        // mirror/rotate 2 qudrants
        x1=x0; y1=y0; m=pnt.num;
        for (i=m;i>=3;)
            {
            i--; z=pnt.dat[i]   ;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            q=x; x=+y; y=-q;    // z+
            pnt.dat[i+0]=(x1+x);
            pnt.dat[i+1]=(y1-y);
            pnt.dat[i+2]=(   z);
            }
        for (y1+=2.0*a,i=m;i>=3;)
            {
            i--; z=pnt.dat[i]   ;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            q=x; x=-y; y=+q;    // z-
            pnt.add(x1+x);
            pnt.add(y1+y);
            pnt.add(   z);
            }
        // mirror the rest
        x0+=a; y0+=a; m=pnt.num;
        for (i=m;i>=3;)
            {
            i--; z=pnt.dat[i]   ;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            pnt.add(x0-x);
            pnt.add(y0+y);
            pnt.add(   z);
            }
        a*=2.0;
        }
/*
        // rotations
        q=x; x=+y; y=-q;    // z+
        q=x; x=-y; y=+q;    // z-
*/
    }
//---------------------------------------------------------------------------
void Hilbert3D(List<double> &pnt,double x,double y,double z,double a,int n)
    {
    int i,j,m;
    double x0,y0,z0,x1,y1,z1,q;
    for (m=8*3,i=1,j=2;j<=n;j++,i+=i+1) m*=8; a/=i; // m = needed size of pnt[]
    pnt.num=0;
    // init generator
          pnt.add(x); pnt.add(y); pnt.add(z);
    z-=a; pnt.add(x); pnt.add(y); pnt.add(z);
    x+=a; pnt.add(x); pnt.add(y); pnt.add(z);
    z+=a; pnt.add(x); pnt.add(y); pnt.add(z);
    y+=a; pnt.add(x); pnt.add(y); pnt.add(z);
    z-=a; pnt.add(x); pnt.add(y); pnt.add(z);
    x-=a; pnt.add(x); pnt.add(y); pnt.add(z);
    z+=a; pnt.add(x); pnt.add(y); pnt.add(z);
    x0=x+0.5*a; // center of generator
    y0=y-0.5*a;
    z0=z-0.5*a;
    // iterative subdivision
    for (j=2;j<=n;j++)
        {
        // mirror/rotate qudrants
        x1=x0; y1=y0; z1=z0; m=pnt.num;
        for (i=m;i>=3;)
            {
            i--; z=pnt.dat[i]-z0;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            q=y; y=-z; z=+q;    // x-
            pnt.dat[i+0]=(x1+x);
            pnt.dat[i+1]=(y1+y);
            pnt.dat[i+2]=(z1-z);
            }
        for (z1-=2.0*a,i=m;i>=3;)
            {
            i--; z=pnt.dat[i]-z0;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            q=z; z=+x; x=-q;    // y+
            q=y; y=+z; z=-q;    // x+
            pnt.add(x1-x);
            pnt.add(y1+y);
            pnt.add(z1+z);
            }
        for (x1+=2.0*a,i=m;i>=3;)
            {
            i--; z=pnt.dat[i]-z0;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            q=y; y=+z; z=-q;    // x+
            pnt.add(x1+x);
            pnt.add(y1+y);
            pnt.add(z1+z);
            }
        for (z1+=2.0*a,i=m;i>=3;)
            {
            i--; z=pnt.dat[i]-z0;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            q=z; z=+x; x=-q;    // y+
            pnt.add(x1-x);
            pnt.add(y1-y);
            pnt.add(z1+z);
            }
        // mirror octants
        x0+=a; y0+=a; z0-=a; m=pnt.num;
        for (i=m;i>=3;)
            {
            i--; z=pnt.dat[i]-z0;
            i--; y=pnt.dat[i]-y0;
            i--; x=pnt.dat[i]-x0;
            pnt.add(x0+x);
            pnt.add(y0-y);
            pnt.add(z0+z);
            }
        a*=2.0;
        }
/*
        // rotations
        q=z; z=+x; x=-q;    // y+
        q=z; z=-x; x=+q;    // y-
        q=y; y=+z; z=-q;    // x+
        q=y; y=-z; z=+q;    // x-
        q=x; x=+y; y=-q;    // z+
        q=x; x=-y; y=+q;    // z-
*/
    }
//---------------------------------------------------------------------------
void pnt_draw2(List<double> &pnt)   // piecewise linear
    {
    int i;
    glBegin(GL_LINE_STRIP);
    for (i=0;i<pnt.num;i+=3) glVertex3dv(pnt.dat+i);
    glEnd();
    }
//---------------------------------------------------------------------------
void pnt_draw4(List<double> &pnt)   // piecewise cubic
    {
    int i,j;
    double  d1,d2,t,tt,ttt,*p0,*p1,*p2,*p3,a0[3],a1[3],a2[3],a3[3],p[3];
    glBegin(GL_LINE_STRIP);
    for (i=-3;i<pnt.num;i+=3)
        {
        j=i-3; if (j>pnt.num-3) j=pnt.num-3; if (j<0) j=0; p0=pnt.dat+j;
        j=i  ; if (j>pnt.num-3) j=pnt.num-3; if (j<0) j=0; p1=pnt.dat+j;
        j=i+3; if (j>pnt.num-3) j=pnt.num-3; if (j<0) j=0; p2=pnt.dat+j;
        j=i+6; if (j>pnt.num-3) j=pnt.num-3; if (j<0) j=0; p3=pnt.dat+j;
        for (j=0;j<3;j++)
            {
            d1=0.5*(p2[j]-p0[j]);
            d2=0.5*(p3[j]-p1[j]);
            a0[j]=p1[j];
            a1[j]=d1;
            a2[j]=(3.0*(p2[j]-p1[j]))-(2.0*d1)-d2;
            a3[j]=d1+d2+(2.0*(-p2[j]+p1[j]));
            }
        for (t=0.0;t<=1.0;t+=0.1)   // single curve patch/segment
            {
            tt=t*t;
            ttt=tt*t;
            for (j=0;j<3;j++) p[j]=a0[j]+(a1[j]*t)+(a2[j]*tt)+(a3[j]*ttt);
            glVertex3dv(p);
            }
        }
    glEnd();
    }
//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------

我使用了我的动态列表模板,所以:


List<double> xxx;double xxx[];
xxx.add(5);添加5到列表末尾 相同
xxx[7]访问数组元素(安全)
xxx.dat[7]访问数组元素(不安全但快速直接访问)
xxx.num是数组的实际使用大小
xxx.reset()清除数组并为项目设置xxx.num=0
xxx.allocate(100)预分配空间100

但是您可以使用动态甚至静态一维数组代替,因为希尔伯特曲线的点数很容易计算(m在每个希尔伯特函数的开头)。

用法很简单,只需执行以下操作:

List<double> pnt;
Hilbert3D(pnt,-0.8,-0.8,+0.8,1.6,n); 

其中n是迭代次数,pnt是每个点的线性(x,y,z)坐标列表(每个点 3 个数字)。开始位置和初始大小设置为覆盖以(0,0,0)半大小为中心的立方体0.8 <-0.8,+0.8>

现在只需计算点之间的单位长度,最接近左边的希尔伯特曲线点的索引和参数(到它的距离),只是线性插值。这里的C++示例:

if (pnt.num>=6)
    {
    int i;
    double x,y,z,t,l,dl;
    dl=sqrt(                                                    // base distance between points
            ((pnt[0]-pnt[3])*(pnt[0]-pnt[3]))
           +((pnt[1]-pnt[4])*(pnt[1]-pnt[4]))
           +((pnt[2]-pnt[5])*(pnt[2]-pnt[5]))
            );
    l=double(Form1->sb_t->Position)/double(Form1->sb_t->Max);   // <0,1>
    l*=dl*double((pnt.num/3)-1);                                // <0,Hilbert_curve_lenght>
    i=floor(l/dl); t=(l-(double(i)*dl))/dl; i*=3;               // index in pnt[] and single line segment paramerer
    x=pnt[i+0]+(pnt[i+3]-pnt[i+0])*t;                           // linear interpolation
    y=pnt[i+1]+(pnt[i+4]-pnt[i+1])*t;
    z=pnt[i+2]+(pnt[i+5]-pnt[i+2])*t;
    glColor3f(0.0,1.0,0.0); t=0.05;                             // render of marker
    glBegin(GL_LINES);
    glVertex3d(x-t,y-t,z); glVertex3d(x+t,y+t,z);
    glVertex3d(x+t,y-t,z); glVertex3d(x-t,y+t,z);
    glVertex3d(x,y-t,z-t); glVertex3d(x,y+t,z+t);
    glVertex3d(x,y-t,z+t); glVertex3d(x,y+t,z-t);
    glVertex3d(x-t,y,z-t); glVertex3d(x+t,y,z+t);
    glVertex3d(x+t,y,z-t); glVertex3d(x-t,y,z+t);
    glEnd();
    }

2D 预览:

二维

3D 预览:

3D

于 2018-05-23T12:24:40.603 回答