我正在尝试在 R 中正确构建重复测量方差分析并提取相关的 lsmeans。我的数据由一个因变量 (rSWC) 和一个预测变量 (Geno) 组成。完整的数据集如下:
> str(mydata)
'data.frame': 153 obs. of 5 variables:
$ Geno : Factor w/ 5 levels "8306","8307",..
$ BioRepeat : int 1 1 1 1 1 1 1 1 1 2 ...
$ Geno_BioRepeat: Factor w/ 17 levels "8306_1","8306_2",..
$ Day : Factor w/ 9 levels "1","2","3","4",..
$ rSWC : num 104.5 92.5 81.8 65.6 61 ...
我将我的重复测量方差分析构建为:
rmaModel <- aov(rSWC ~ Geno + Error(Day/Geno), data=mydata)
我希望为每个重复测量(天)提取 Geno 的 lsmeans(和相关的方差项)。目前,如果我尝试提取 lsmean,我只会为每个 Geno 获得一个 lsmean 和一条我无法解释的警告消息:
> library(lsmeans)
> lsmeans(rmaModel, specs = "Geno")
Geno lsmean SE df lower.CL upper.CL
8306 59.43538 8.905658 8.00 38.89890 79.97187
8307 58.06825 9.988820 12.45 35.03399 81.10251
8417 71.16686 10.158125 13.24 47.74219 94.59154
Control 86.97797 10.488538 14.84 62.79136 111.16459
WT 45.76538 9.988820 12.45 22.73112 68.79964
Confidence level used: 0.95
Warning message:
In lsm.basis.aovlist(object, trms, xlev, grid, ...) :
Some predictors are correlated with the intercept - results are biased.
May help to re-fit with different contrasts, e.g. 'contr.sum'
任何有助于了解我的模型是否构建得当、如何为每个重复测量提取 lsmean 以及如何解释警告消息的帮助将不胜感激。谢谢!