2

我在这里使用 VGG来训练我的数据:

# 分類するクラス
classes = ['chino', 'cocoa', 'chiya', 'rize', 'syaro']
nb_classes = len(classes)

img_width, img_height = 150, 150

# トレーニング用とバリデーション用の画像格納先
train_data_dir = 'dataset/train'
validation_data_dir = 'dataset/validation'

# 今回はトレーニング用に200枚、バリデーション用に50枚の画像を用意した。
nb_train_samples = 200
nb_validation_samples = 50

batch_size = 16
nb_epoch = 10


result_dir = 'results'
if not os.path.exists(result_dir):
    os.mkdir(result_dir)


def vgg_model_maker():
    """ VGG16のモデルをFC層以外使用。FC層のみ作成して結合して用意する """

    # VGG16のロード。FC層は不要なので include_top=False
    input_tensor = Input(shape=(img_width, img_height, 3))
    vgg16 = VGG16(include_top=False, weights='imagenet', input_tensor=input_tensor)

    # FC層の作成
    top_model = Sequential()
    top_model.add(Flatten(input_shape=vgg16.output_shape[1:]))
    top_model.add(Dense(256, activation='relu'))
    top_model.add(Dropout(0.5))
    top_model.add(Dense(nb_classes, activation='softmax'))

    # VGG16とFC層を結合してモデルを作成
    model = Model(input=vgg16.input, output=top_model(vgg16.output))

    return model


def image_generator():
    """ ディレクトリ内の画像を読み込んでトレーニングデータとバリデーションデータの作成 """
    train_datagen = ImageDataGenerator(
        rescale=1.0 / 255,
        zoom_range=0.2,
        horizontal_flip=True)

    validation_datagen = ImageDataGenerator(rescale=1.0 / 255)

    train_generator = train_datagen.flow_from_directory(
        train_data_dir,
        target_size=(img_width, img_height),
        color_mode='rgb',
        classes=classes,
        class_mode='categorical',
        batch_size=batch_size,
        shuffle=True)

    validation_generator = validation_datagen.flow_from_directory(
        validation_data_dir,
        target_size=(img_width, img_height),
        color_mode='rgb',
        classes=classes,
        class_mode='categorical',
        batch_size=batch_size,
        shuffle=True)

    return (train_generator, validation_generator)


if __name__ == '__main__':
    start = time.time()

    # モデル作成
    vgg_model = vgg_model_maker()

    # 最後のconv層の直前までの層をfreeze
    for layer in vgg_model.layers[:15]:
        layer.trainable = False

    # 多クラス分類を指定
    vgg_model.compile(loss='categorical_crossentropy',
              optimizer=optimizers.SGD(lr=1e-3, momentum=0.9),
              metrics=['accuracy'])

    # 画像のジェネレータ生成
    train_generator, validation_generator = image_generator()

    # Fine-tuning
    history = vgg_model.fit_generator(
        train_generator,
        samples_per_epoch=nb_train_samples,
        nb_epoch=nb_epoch,
        validation_data=validation_generator,
        nb_val_samples=nb_validation_samples)

    vgg_model.save_weights(os.path.join(result_dir, 'finetuning.h5'))

    process_time = (time.time() - start) / 60
    print(u'学習終了。かかった時間は', process_time, u'分です。')

如果只是单独VGG,效果很好,但是我想对它应用zca美白。Keras 允许只用一行代码 ( zca_whitening=True) 添加 ZCA,但问题是我们必须fit()稍后调用该函数。

的参数ImageDataGenerator#fit()是x,即训练数据集。但是在这个程序中,训练数据集将在之后定义。那么在这种情况下如何使用 zca 美白呢?

更新 我已经按照下面的评论进行了更新,但它引发了一个错误:

需要的工作数组太大 - 无法使用标准 32 位 LAPACK 执行计算

为了减少内存,我尝试只将 6 张图像放入训练数据集中,但没有任何改变。那么这个错误实际上是什么意思呢?

4

1 回答 1

2

实际上,这很简单。您创建一个DirectoryIterator没有白化的生成器+,在内存中加载一堆批次(包含足够的样本来表示您的数据集)并使用它们来适应新的生成器:

import numpy as np
from keras.preprocessing.image import ImageDataGenerator

train_dir = '/datasets/train/'
gen_tr_batches = 4

# Generator for the network's training generator.
gen_train = (ImageDataGenerator(rescale=1. / 255.)
             .flow_from_directory(train_dir,
                                  target_size=(256, 256),
                                  batch_size=32,
                                  shuffle=True))
gen_tr_x = np.vstack(next(gen_train)[0] for _ in range(gen_tr_batches))

# Actual generator for the network's training.
g = ImageDataGenerator(rescale=1. / 255.,
                       zca_whitening=True)
g.fit(gen_tr_x)

train = g.flow_from_directory(train_dir)

# Network's training ...

注意:不要发布链接。最好在您的帖子中简单地写下可重现的代码片段。

于 2018-03-28T12:19:53.540 回答