我有一个包含 19 个变量的数据框,其中 17 个是因子。其中一些因子包含缺失值,编码为 NA。我想对数据框中的所有因素使用 forcats::fct_explicit_na() 将缺失重新编码为单独的因素级别“to_impute”。
一个带有两个因子变量的小例子:
df <- structure(list(loc_len = structure(c(NA, NA, NA, NA, NA, NA,
1L, 1L, 3L, 1L), .Label = c("No", "< 5 sec", "5 sec - < 1 min",
"1 - 5 min", "> 5 min", "Unknown duration"), class = "factor"),
AMS = structure(c(1L, 2L, NA, 1L, 1L, NA, NA, NA, NA, NA), .Label = c("No",
"Yes"), class = "factor")), .Names = c("loc_len", "AMS"), row.names = c(NA,
-10L), class = c("tbl_df", "tbl", "data.frame"))
table(df$loc_len, useNA = "always")
No < 5 sec 5 sec - < 1 min 1 - 5 min > 5 min Unknown duration <NA>
3 0 1 0 0 0 6
下面的代码对两个变量执行此操作。我想对数据框中的所有因子变量“f_names”执行此操作。有没有办法“矢量化” fct_explicit_na()?
f_names <- names(Filter(is.factor, df))
f_names
[1] "loc_len" "AMS"
下面的代码可以满足我的要求,但对于每个因素都是分开的:
df_new <- df %>%
mutate(loc_len = fct_explicit_na(loc_len, na_level = "to_impute")) %>%
mutate(AMS = fct_explicit_na(AMS, na_level = "to_impute"))
我想要数据集中所有因素的这种表,名称在 'f_names' :
lapply(df_new, function(x) data.frame(table(x, useNA = "always")))
现在是:
$loc_len
x Freq
1 No 3
2 < 5 sec 0
3 5 sec - < 1 min 1
4 1 - 5 min 0
5 > 5 min 0
6 Unknown duration 0
7 to_impute 6
8 <NA> 0
$AMS
x Freq
1 No 3
2 Yes 1
3 to_impute 6
4 <NA> 0