9

有没有办法在 geom_curve 线的中心或附近添加标签?目前,我只能通过标记曲线的起点或终点来做到这一点。

library(tidyverse)
library(ggrepel)

df <- data.frame(x1 = 1, y1 = 1, x2 = 2, y2 = 3, details = "Object Name")

ggplot(df, aes(x = x1, y = y1, label = details)) +
  geom_point(size = 4) +
  geom_point(aes(x = x2, y = y2),
             pch = 17, size = 4) +
  geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2)) +
  geom_label(nudge_y = 0.05) +
  geom_label_repel(box.padding = 2)

使用 geom_label 或 geom_label_repel 标记原点

我希望有一些方法可以自动标记坐标 x=1.75、y=1.5 附近的曲线。有没有我还没有看到的解决方案?我的预期图表非常繁忙,并且标记原点使得更难看到正在发生的事情,而标记弧会产生更清晰的输出。 我当前没有标签的图表示例

4

2 回答 2

2

我已经找到了解决这个问题的办法。它又大又笨重,但很有效。

核心问题是它geom_curve()没有绘制固定路径,而是随着绘图窗口的纵横比移动和缩放。coord_fixed(ratio=1)没有办法锁定纵横比,我无法轻松找到预测geom_curve()片段中点的位置。

在高度 = 4、宽度 = 4 处导出的绘图 在高度 = 2、宽度 = 4 处导出的绘图,绘制相同的点

因此,我开始着手寻找曲线的中点,然后强制曲线通过我稍后标记的那个点。为了找到中点,我必须从grid 包中复制两个函数:

library(grid)
library(tidyverse)
library(ggrepel)

# Find origin of rotation
# Rotate around that origin
calcControlPoints <- function(x1, y1, x2, y2, curvature, angle, ncp,
                              debug=FALSE) {
  # Negative curvature means curve to the left
  # Positive curvature means curve to the right
  # Special case curvature = 0 (straight line) has been handled
  xm <- (x1 + x2)/2
  ym <- (y1 + y2)/2
  dx <- x2 - x1
  dy <- y2 - y1
  slope <- dy/dx

  # Calculate "corner" of region to produce control points in
  # (depends on 'angle', which MUST lie between 0 and 180)
  # Find by rotating start point by angle around mid point
  if (is.null(angle)) {
    # Calculate angle automatically
    angle <- ifelse(slope < 0,
                    2*atan(abs(slope)),
                    2*atan(1/slope))
  } else {
    angle <- angle/180*pi
  }
  sina <- sin(angle)
  cosa <- cos(angle)
  # FIXME:  special case of vertical or horizontal line ?
  cornerx <- xm + (x1 - xm)*cosa - (y1 - ym)*sina
  cornery <- ym + (y1 - ym)*cosa + (x1 - xm)*sina

  # Debugging
  if (debug) {
    grid.points(cornerx, cornery, default.units="inches",
                pch=16, size=unit(3, "mm"),
                gp=gpar(col="grey"))
  }

  # Calculate angle to rotate region by to align it with x/y axes
  beta <- -atan((cornery - y1)/(cornerx - x1))
  sinb <- sin(beta)
  cosb <- cos(beta)
  # Rotate end point about start point to align region with x/y axes
  newx2 <- x1 + dx*cosb - dy*sinb
  newy2 <- y1 + dy*cosb + dx*sinb

  # Calculate x-scale factor to make region "square"
  # FIXME:  special case of vertical or horizontal line ?
  scalex <- (newy2 - y1)/(newx2 - x1)
  # Scale end points to make region "square"
  newx1 <- x1*scalex
  newx2 <- newx2*scalex

  # Calculate the origin in the "square" region
  # (for rotating start point to produce control points)
  # (depends on 'curvature')
  # 'origin' calculated from 'curvature'
  ratio <- 2*(sin(atan(curvature))^2)
  origin <- curvature - curvature/ratio
  # 'hand' also calculated from 'curvature'
  if (curvature > 0)
    hand <- "right"
  else
    hand <- "left"
  oxy <- calcOrigin(newx1, y1, newx2, newy2, origin, hand)
  ox <- oxy$x
  oy <- oxy$y

  # Calculate control points
  # Direction of rotation depends on 'hand'
  dir <- switch(hand,
                left=-1,
                right=1)
  # Angle of rotation depends on location of origin
  maxtheta <- pi + sign(origin*dir)*2*atan(abs(origin))
  theta <- seq(0, dir*maxtheta,
               dir*maxtheta/(ncp + 1))[c(-1, -(ncp + 2))]
  costheta <- cos(theta)
  sintheta <- sin(theta)
  # May have BOTH multiple end points AND multiple
  # control points to generate (per set of end points)
  # Generate consecutive sets of control points by performing
  # matrix multiplication
  cpx <- ox + ((newx1 - ox) %*% t(costheta)) -
    ((y1 - oy) %*% t(sintheta))
  cpy <- oy + ((y1 - oy) %*% t(costheta)) +
    ((newx1 - ox) %*% t(sintheta))

  # Reverse transformations (scaling and rotation) to
  # produce control points in the original space
  cpx <- cpx/scalex
  sinnb <- sin(-beta)
  cosnb <- cos(-beta)
  finalcpx <- x1 + (cpx - x1)*cosnb - (cpy - y1)*sinnb
  finalcpy <- y1 + (cpy - y1)*cosnb + (cpx - x1)*sinnb

  # Debugging
  if (debug) {
    ox <- ox/scalex
    fox <- x1 + (ox - x1)*cosnb - (oy - y1)*sinnb
    foy <- y1 + (oy - y1)*cosnb + (ox - x1)*sinnb
    grid.points(fox, foy, default.units="inches",
                pch=16, size=unit(1, "mm"),
                gp=gpar(col="grey"))
    grid.circle(fox, foy, sqrt((ox - x1)^2 + (oy - y1)^2),
                default.units="inches",
                gp=gpar(col="grey"))
  }

  list(x=as.numeric(t(finalcpx)), y=as.numeric(t(finalcpy)))
}

calcOrigin <- function(x1, y1, x2, y2, origin, hand) {
  # Positive origin means origin to the "right"
  # Negative origin means origin to the "left"
  xm <- (x1 + x2)/2
  ym <- (y1 + y2)/2
  dx <- x2 - x1
  dy <- y2 - y1
  slope <- dy/dx
  oslope <- -1/slope
  # The origin is a point somewhere along the line between
  # the end points, rotated by 90 (or -90) degrees
  # Two special cases:
  # If slope is non-finite then the end points lie on a vertical line, so
  # the origin lies along a horizontal line (oslope = 0)
  # If oslope is non-finite then the end points lie on a horizontal line,
  # so the origin lies along a vertical line (oslope = Inf)
  tmpox <- ifelse(!is.finite(slope),
                  xm,
                  ifelse(!is.finite(oslope),
                         xm + origin*(x2 - x1)/2,
                         xm + origin*(x2 - x1)/2))
  tmpoy <- ifelse(!is.finite(slope),
                  ym + origin*(y2 - y1)/2,
                  ifelse(!is.finite(oslope),
                         ym,
                         ym + origin*(y2 - y1)/2))
  # ALWAYS rotate by -90 about midpoint between end points
  # Actually no need for "hand" because "origin" also
  # encodes direction
  # sintheta <- switch(hand, left=-1, right=1)
  sintheta <- -1
  ox <- xm - (tmpoy - ym)*sintheta
  oy <- ym + (tmpox - xm)*sintheta

  list(x=ox, y=oy)
}

有了这个,我计算了每条记录的中点

df <- data.frame(x1 = 1, y1 = 1, x2 = 10, y2 = 10, details = "Object Name")

df_mid <- df %>% 
  mutate(midx = calcControlPoints(x1, y1, x2, y2, 
                                  angle = 130, 
                                  curvature = 0.5, 
                                  ncp = 1)$x) %>% 
  mutate(midy = calcControlPoints(x1, y1, x2, y2, 
                                  angle = 130, 
                                  curvature = 0.5, 
                                  ncp = 1)$y)

然后我制作图表,但绘制两条单独的曲线。一个从起点到计算的中点,另一个从中点到目的地。寻找中点和绘制这些曲线的角度和曲率设置很难防止结果看起来像两条不同的曲线。

ggplot(df_mid, aes(x = x1, y = y1)) +
  geom_point(size = 4) +
  geom_point(aes(x = x2, y = y2),
             pch = 17, size = 4) +
  geom_curve(aes(x = x1, y = y1, xend = midx, yend = midy),
             curvature = 0.25, angle = 135) +
  geom_curve(aes(x = midx, y = midy, xend = x2, yend = y2),
             curvature = 0.25, angle = 45) +
  geom_label_repel(aes(x = midx, y = midy, label = details),
                   box.padding = 4,
                   nudge_x = 0.5,
                   nudge_y = -2)

带有标签的最终图与不可见的中点相关联

虽然答案并不理想或优雅,但它可以与大量记录一起扩展。

于 2018-04-05T01:37:58.193 回答
1

也许注释在这里会有所帮助(参见: http: //ggplot2.tidyverse.org/reference/annotate.html

library(tidyverse)
library(ggrepel)

df <- data.frame(x1 = 1, y1 = 1, x2 = 2, y2 = 3, details = "Object Name")

ggplot(df, aes(x = x1, y = y1, label = details)) +
  geom_point(size = 4) +
  geom_point(aes(x = x2, y = y2),
             pch = 17, size = 4) +
  geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2)) +
  geom_label(nudge_y = 0.05) +
  geom_label_repel(box.padding = 2) +
  annotate("label", x=1.75, y=1.5, label=df$details)
于 2018-03-16T19:57:11.227 回答