这有点棘手!我正在运行回归的滚动窗口,并且正在收集每个窗口的所有系数。我的目标是绘制系数如何随时间波动。此外,我希望通过在不显着时给出不同的色点,当发现系数具有统计显着性(比如在 95% 时)时,该图给出不同的颜色。
到目前为止,我所拥有的是:
library(plm)
coeff<-NULL
for(e in 1:39){ #44 years total for each country
paneldata<-pdata.frame(
rbind(
subset(LaggedPannel,Country=="A")[(e):(e+5),],
subset(LaggedPannel,Country=="B")[(e):(e+5),]),
index=c("Country","Year")) #we made our new windowed panel frame
coef<-coef(summary(plm(Y~lag(Y,1),data=paneldata,model="pooling")))[2,1] #gets the coeff from a panel regression
coeff<-c(coeff,coef) #store coeffs
}
plot(coeff,type="b",col="red")
情节产生:
例如说第二个和第四个系数(图中的项目符号)在统计上是不显着的;那么它们的颜色应该是绿色的。
Data (LaggedPannel)
:
Age1 Age2 Age3
Australia-1973 261.156 255.699 249.954
Australia-1974 261.305 255.394 251.470
Australia-1975 258.160 253.543 250.538
Australia-1976 262.504 258.066 254.720
Australia-1977 240.086 260.846 258.418
Australia-1978 228.774 238.871 259.449
USA-1973 4100.257 4104.028 4107.409
USA-1974 4135.435 4118.422 4120.286
USA-1975 4171.648 4164.065 4134.525
USA-1976 4208.236 4187.196 4171.167
USA-1977 4240.832 4211.655 4189.650
USA-1978 4286.923 4255.092 4229.701