我正在尝试在 python 中的 loglog 图中进行推断。我做了线性回归以用最佳拟合曲线拟合数据。现在我想扩展那条最佳拟合线,看看斜率如何随着扩展范围而变化。
我的数据真的很大,所以这里是我的数据的链接:my_data
我的代码如下所示:
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import InterpolatedUnivariateSpline
from scipy.optimize import curve_fit
import scipy as sp
import scipy.stats
#########################################################
motl = 'motl.txt'
mx, my = np.loadtxt(motl, unpack=True)
print mx
print my
# now do general curve fit for all data
# Regression Function
def regress(x, y):
#Return a tuple of predicted y values and parameters for linear regression
p = sp.stats.linregress(x, y)
b1, b0, r, p_val, stderr = p
y_pred = sp.polyval([b1, b0], x)
return y_pred, p
# plotting z
allx, ally = mx, my # data, non-transformed
y_pred, _ = regress(np.log(allx), np.log(ally)) # change here # transformed input
plt.loglog(allx, ally, marker='p',color ='g', markersize=3,linestyle='None')
plt.loglog(allx, np.exp(y_pred), "k:") # transformed output
#################################################
# positions to inter/extrapolate
x = np.linspace(12, 14, 1000)
# spline order: 1linear, 2 quadratic, 3 cubic ...
order = 1
# do inter/extrapolation
s = InterpolatedUnivariateSpline(np.log10(mx), np.log10(my), k=order)
y = s(x)
plt.loglog(10**x, 10**y, 'g:')
#######################################################
plt.show()
使用回归,绘图如下所示:
但是我如何推断将线从 10 ^ 12 延长到 10 ^ 14?感谢您的帮助。