假设您的 alpha 在组件上是固定的并用于多次迭代,您可以将相应 gamma 分布的 ppf 制成表格。这可能是可用的,scipy.stats.gamma.ppf
但我们也可以使用scipy.special.gammaincinv
. 此功能似乎相当缓慢,因此这是一笔可观的前期投资。
这是一般想法的粗略实现:
import numpy as np
from scipy import special
class symm_dirichlet:
def __init__(self, alpha, resolution=2**16):
self.alpha = alpha
self.resolution = resolution
self.range, delta = np.linspace(0, 1, resolution,
endpoint=False, retstep=True)
self.range += delta / 2
self.table = special.gammaincinv(self.alpha, self.range)
def draw(self, n_sampl, n_comp, interp='nearest'):
if interp != 'nearest':
raise NotImplementedError
gamma = self.table[np.random.randint(0, self.resolution,
(n_sampl, n_comp))]
return gamma / gamma.sum(axis=1, keepdims=True)
import time, timeit
t0 = time.perf_counter()
X = symm_dirichlet(0.03)
t1 = time.perf_counter()
print(f'Upfront cost {t1-t0:.3f} sec')
print('Running cost per 1000 samples of width 4840')
print('tabulated {:3f} sec'.format(timeit.timeit(
'X.draw(1, 4840)', number=1000, globals=globals())))
print('np.random.dirichlet {:3f} sec'.format(timeit.timeit(
'np.random.dirichlet([0.03]*4840)', number=1000, globals=globals())))
样本输出:
Upfront cost 13.067 sec
Running cost per 1000 samples of width 4840
tabulated 0.059365 sec
np.random.dirichlet 0.980067 sec
最好检查它是否大致正确: