我是张量流的新手。我正在尝试在一维卷积层之后添加一个最大池化层:
import tensorflow as tf
import math
sess = tf.InteractiveSession()
length=458
# These will be inputs
## Input pixels, image with one channel (gray)
x = tf.placeholder("float", [None, length])
# Note that -1 is for reshaping
x_im = tf.reshape(x, [-1,length,1])
## Known labels
# None works during variable creation to be
# unspecified size
y_ = tf.placeholder("float", [None,2])
# Conv layer 1
num_filters1 = 2
winx1 = 3
W1 = tf.Variable(tf.truncated_normal(
[winx1, 1 , num_filters1],
stddev=1./math.sqrt(winx1)))
b1 = tf.Variable(tf.constant(0.1,
shape=[num_filters1]))
# convolution, pad with zeros on edges
xw = tf.nn.conv1d(x_im, W1,
stride=5,
padding='SAME')
h1 = tf.nn.relu(xw + b1)
# Max pooling, no padding on edges
p1 = tf.nn.max_pool(h1, ksize=[1, 1, 2, 1],
strides=[1, 1, 1, 1], padding='VALID')
但是我得到了错误,我知道为什么会这样?