我正在寻找适用于一维数组(如光谱数据)的 Richardson-Lucy 反卷积算法的实现。我试过scikit-image,但显然它只适用于图像。
问问题
1272 次
1 回答
1
您是否尝试过restoration.richardson_lucy
在单行/一列二维阵列上使用?它是否按预期工作?
这是一个基于http://scikit-image.org/docs/dev/auto_examples/filters/plot_deconvolution.html的示例(参见输入单元格 3 和 4):
In [1]: import numpy as np
...: import matplotlib.pyplot as plt
...:
...: from scipy.signal import convolve2d as conv2
...:
...: from skimage import color, data, restoration
...:
...: astro = color.rgb2gray(data.astronaut())
...:
In [2]:
...: psf = np.ones((5, 5)) / 25
...: astro = conv2(astro, psf, 'same')
...: # Add Noise to Image
...: astro_noisy = astro.copy()
...: astro_noisy += (np.random.poisson(lam=25, size=astro.shape) - 10) / 255.
...:
...:
In [3]: astro_1d = astro[:1, :]
In [4]: psf_1d = psf[:1, :] * 5
In [5]: deconvolved_RL = restoration.richardson_lucy(astro_1d, psf_1d, iteration
...: s=30)
...:
...:
In [8]: deconvolved_RL[0][:10]
Out[8]:
array([ 3.68349589e-06, 4.64232976e-03, 8.96492325e-01,
2.92227252e-01, 2.27669473e-01, 1.63909318e-01,
2.62231088e-01, 5.63304220e-01, 4.29589937e-01,
3.21857292e-01])
In [9]: astro_1d[0][:10]
Out[9]:
array([ 0.20156543, 0.25178911, 0.31006612, 0.29581576, 0.30208733,
0.32490093, 0.35101666, 0.36213184, 0.35174074, 0.318339 ])
如果您发现转换为 2D 真的很不方便,请随时在 GitHub 上提出问题。
于 2018-01-31T21:56:13.633 回答