我试图通过使用自举来显示 gamma 分布的样本大小对 95% 置信区间边界的影响。现在,我需要将 4 个不同样本大小的结果放在一个箱线图中。R代码如下:
y <- rgamma(30,1,1) + rnorm(30,0,0.01)
y60 <- rgamma(60,1,1) + rnorm(60,0,0.01)
y100 <- rgamma(100,1,1) + rnorm(100,0,0.01)
y200 <- rgamma(200,1,1) + rnorm(200,0,0.01)
minusL <- function(params, data) {
-sum(log(dgamma(data, params[1], params[2])))
}
fit <- nlm(minusL, c(1,1), data=y)
fit
gammamedian<-function(data) {
fit <- nlm(minusL, c(1,1), data=data)
qgamma(.5, fit$estimate[1], fit$estimate[2])
}
gammamedian(y)
gammamedian(y60)
gammamedian(y100)
gammamedian(y200)
gengamma<- function(data, params){
rgamma(length(data), params[1], params[2])}
library(boot)
pbootresults<-boot(y, gammamedian, R=1000, sim="parametric",
ran.gen=gengamma, mle=fit$estimate)
pbootresults
boot.ci(pbootresults, type=c("basic", "perc", "norm"))
pbootresults<-boot(y60, gammamedian, R=1000, sim="parametric",
ran.gen=gengamma, mle=fit$estimate)
pbootresults
boot.ci(pbootresults, type=c("basic", "perc", "norm"))
pbootresults<-boot(y100, gammamedian, R=1000, sim="parametric",
ran.gen=gengamma, mle=fit$estimate)
pbootresults
boot.ci(pbootresults, type=c("basic", "perc", "norm"))
pbootresults<-boot(y200, gammamedian, R=1000, sim="parametric",
ran.gen=gengamma, mle=fit$estimate)
pbootresults
boot.ci(pbootresults, type=c("basic", "perc", "norm"))
[An Excel image example ][1]
[1]: https://i.stack.imgur.com/JXR6P.jpg