这是一种方法:
示例数据
library(raster)
r <- raster(ncols=36, nrows=18)
p1 <- rbind(c(-180,-20), c(-140,55), c(10, 0), c(-140,-60), c(-180,-20))
hole <- rbind(c(-150,-20), c(-100,-10), c(-110,20), c(-150,-20))
p1 <- list(p1, hole)
p2 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55), c(-10,0))
p3 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45), c(-125,0))
att <- data.frame(id=1:3, var1=10:12, var2=c(6,9,6))
pols <- spPolygons(p1, p2, p3, attr=att)
重要的是要有一个具有唯一性的字段如果您的数据没有,请像这样添加
pols$id <- 1:nrow(pols)
光栅化
r <- rasterize(pols, r, field='id')
为所有其他变量创建一个图层
x <- subs(r, data.frame(pols), by='id', which=2:ncol(pols), filename="rstr.grd")
x
#class : RasterBrick
#dimensions : 18, 36, 648, 2 (nrow, ncol, ncell, nlayers)
#resolution : 10, 10 (x, y)
#extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
#data source : rstr.grd
#names : var1, var2
#min values : 10, 6
#max values : 12, 9
另一种方法是使用 Raster Attribute Table 保留一个图层,这样更快,但根据您的目的,可能是一种不太有用的方法:
r <- rasterize(pols, r, field='id')
f <- as.factor(r)
v <- levels(f)[[1]]
v <- cbind(v, data.frame(pols)[,-1])
levels(f) <- v
f
#class : RasterLayer
#dimensions : 18, 36, 648 (nrow, ncol, ncell)
#resolution : 10, 10 (x, y)
#extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
#data source : in memory
#names : layer
#values : 1, 3 (min, max)
#attributes :
# ID var1 var2
# 1 10 6
# 2 11 9
# 3 12 6
然后你可以这样做:
z <- deratify(f)
获得与第一个示例相同的结果
z
#class : RasterBrick
#dimensions : 18, 36, 648, 2 (nrow, ncol, ncell, nlayers)
#resolution : 10, 10 (x, y)
#extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
#data source : in memory
#names : var1, var2
#min values : 10, 6
#max values : 12, 9