在两个向量 V1(x11, x12) και V2(x21,x22) 中,我们可以将它们的内积计算为 V1 • V2.= (x11* x21 + x12 * x22 )。
我尝试将最小内积计算为 (x1i x2j |ij|, ij V1, V2 处的坐标位置。每个 cooedinate 在求和条件下使用一次。
I TRIED THIS:
int : vlen;
set of int : LEN = 1..vlen;
set of int : VECS = 1..2;
array[VECS,LEN] of -25..25 : vector;
var -600..700 : sumTotal;
constraint exists(i,j,k,l in LEN where i!=k \/ j!=l)(
exists(v,v2 in VECS)(sumTotal=(vector[v,i] * vector[v2,j] * abs(i-j)+vector[v,k] * vector[v2,l] * abs(k-l)
)));
solve minimize sumTotal;
output ["vector1=["]++[" \(vector[1,j])"|j in LEN]++[" ];\nvector2=["]++[" \(vector[2,j])"|j in LEN]++[" ];\nsumTotal=\(sumTotal);"]
for
vlen = 2;
vector = [|-2,3|-4,5|];
我预计:
vector1 = [-2, 3];
vector2 = [-4, 5];
sumTotal = -22;
----------
==========
但我接受:
vector1=[ -2 3 ];
vector2=[ -4 5 ];
sumTotal=-40;
----------
==========