如何将外部产品(先前的特征向量及其本身)包含在链接器中作为层,尤其是以与批处理兼容的方式?
问问题
113 次
2 回答
1
F.matmul
也很方便。
根据输入形状,您可以将其与F.expand_dims
(当然F.reshape
也可以)或使用transa
/transb
参数结合使用。
详细请参考函数官方文档。
代码
import chainer.functions as F
import numpy as np
print("---")
x = np.array([[[1], [2], [3]], [[4], [5], [6]]], 'f')
y = np.array([[[1, 2, 3]], [[4, 5, 6]]], 'f')
print(x.shape)
print(y.shape)
z = F.matmul(x, y)
print(z)
print("---")
x = np.array([[[1], [2], [3]], [[4], [5], [6]]], 'f')
y = np.array([[[1], [2], [3]], [[4], [5], [6]]], 'f')
print(x.shape)
print(y.shape)
z = F.matmul(x, y, transb=True)
print(z)
print("---")
x = np.array([[1, 2, 3], [4, 5, 6]], 'f')
y = np.array([[1, 2, 3], [4, 5, 6]], 'f')
print(x.shape)
print(y.shape)
z = F.matmul(
F.expand_dims(x, -1),
F.expand_dims(y, -1),
transb=True)
print(z)
输出
---
(2, 3, 1)
(2, 1, 3)
variable([[[ 1. 2. 3.]
[ 2. 4. 6.]
[ 3. 6. 9.]]
[[ 16. 20. 24.]
[ 20. 25. 30.]
[ 24. 30. 36.]]])
---
(2, 3, 1)
(2, 3, 1)
variable([[[ 1. 2. 3.]
[ 2. 4. 6.]
[ 3. 6. 9.]]
[[ 16. 20. 24.]
[ 20. 25. 30.]
[ 24. 30. 36.]]])
---
(2, 3)
(2, 3)
variable([[[ 1. 2. 3.]
[ 2. 4. 6.]
[ 3. 6. 9.]]
[[ 16. 20. 24.]
[ 20. 25. 30.]
[ 24. 30. 36.]]])
于 2017-11-22T20:19:39.500 回答
0
您可以使用F.reshape
andF.broadcast_to
来显式处理数组。
假设您有h
形状为(小批量、特征)的二维数组。如果要计算 and 的外积h
,请h
尝试以下代码。这是你想做的吗?
import numpy as np
from chainer import functions as F
def outer_product(h):
s0, s1 = h.shape
h1 = F.reshape(h, (s0, s1, 1))
h1 = F.broadcast_to(h1, (s0, s1, s1))
h2 = F.reshape(h, (s0, 1, s1))
h2 = F.broadcast_to(h2, (s0, s1, s1))
h_outer = h1 * h2
return h_outer
# test code
h = np.arange(12).reshape(3, 4).astype(np.float32)
h_outer = outer_product(h)
print(h.shape)
print(h_outer.shape, h_outer.data)
于 2017-11-22T08:39:51.223 回答