我正在尝试在 Python 中使用 LightGBM 为多类分类问题(3 类)建模分类器。我使用了以下参数。
params = {'task': 'train',
'boosting_type': 'gbdt',
'objective': 'multiclass',
'num_class':3,
'metric': 'multi_logloss',
'learning_rate': 0.002296,
'max_depth': 7,
'num_leaves': 17,
'feature_fraction': 0.4,
'bagging_fraction': 0.6,
'bagging_freq': 17}
数据集的所有分类特征都是用 编码的标签LabelEncoder
。我在运行后训练了模型cv
,eartly_stopping
如下所示。
lgb_cv = lgbm.cv(params, d_train, num_boost_round=10000, nfold=3, shuffle=True, stratified=True, verbose_eval=20, early_stopping_rounds=100)
nround = lgb_cv['multi_logloss-mean'].index(np.min(lgb_cv['multi_logloss-mean']))
print(nround)
model = lgbm.train(params, d_train, num_boost_round=nround)
训练后,我用这样的模型进行预测,
preds = model.predict(test)
print(preds)
我得到一个嵌套数组作为这样的输出。
[[ 7.93856847e-06 9.99989550e-01 2.51164967e-06]
[ 7.26332978e-01 1.65316511e-05 2.73650491e-01]
[ 7.28564308e-01 8.36756769e-06 2.71427325e-01]
...,
[ 7.26892634e-01 1.26915179e-05 2.73094674e-01]
[ 5.93217601e-01 2.07172044e-04 4.06575227e-01]
[ 5.91722491e-05 9.99883828e-01 5.69994435e-05]]
由于中的每个列表都代表我用来查找此类preds
的类概率。np.argmax()
predictions = []
for x in preds:
predictions.append(np.argmax(x))
在分析预测时,我发现我的预测只包含 2 个类 - 0 和 1。第 2 类是训练集中的第二大类,但在预测中找不到它。在评估结果时,它给出了关于78%
准确性的结果.
那么,为什么我的模型没有预测任何情况下的第 2 类。?我使用的参数有什么问题吗?
这不是解释模型做出的预测的正确方法吗?我应该对参数进行任何更改吗??