使用 numba 快速计算余弦相似度找到了这个要点。
import numba
@numba.jit(target='cpu', nopython=True)
def fast_cosine(u, v):
m = u.shape[0]
udotv = 0
u_norm = 0
v_norm = 0
for i in range(m):
if (np.isnan(u[i])) or (np.isnan(v[i])):
continue
udotv += u[i] * v[i]
u_norm += u[i] * u[i]
v_norm += v[i] * v[i]
u_norm = np.sqrt(u_norm)
v_norm = np.sqrt(v_norm)
if (u_norm == 0) or (v_norm == 0):
ratio = 1.0
else:
ratio = udotv / (u_norm * v_norm)
return ratio
结果看起来很有希望(500ns 与我的机器中没有 jit 装饰器的只有 200us)。
我想使用 numba 来并行化向量u
和候选矩阵之间的计算M
——即每一行的余弦。
例子:
def fast_cosine_matrix(u, M):
"""
Return array of cosine similarity between u and rows in M
>>> import numpy as np
>>> u = np.random.rand(100)
>>> M = np.random.rand(10, 100)
>>> fast_cosine_matrix(u, M)
"""
一种方法是用第二个输入重写一个矩阵。但是NotImplementedError
如果我尝试遍历矩阵的行,我会得到一个。打算尝试只使用切片。
我想过使用vectorize
,但我无法让它工作。