13

编辑:以下似乎也适用于FrozenLake-v0. 请注意,我对简单的 Q 学习不感兴趣,因为我希望看到适用于连续观察空间的解决方案。

我最近创建了banana_gymOpenAI 环境。场景如下:

你有一根香蕉。它必须在 2 天内售出,因为第 3 天就坏了。您可以选择价格 x,但香蕉仅以

在此处输入图像描述

奖励为x - 1。如果第三天没有卖掉香蕉,则奖励为-1。(直觉:你为香蕉支付了 1 欧元)。因此,环境是非确定性的(随机的)。

操作:您可以将价格设置为 {0.00, 0.10, 0.20, ..., 2.00}

观察:剩余时间(来源

我计算了最优策略:

Opt at step  1: price 1.50 has value -0.26 (chance: 0.28)
Opt at step  2: price 1.10 has value -0.55 (chance: 0.41)

这也符合我的直觉:首先尝试以更高的价格出售香蕉,因为您知道如果不卖,您还有另一次尝试。然后将价格降低到 0.00 以上。

最优策略计算

我很确定这是正确的,但为了完整起见

#!/usr/bin/env python

"""Calculate the optimal banana pricing policy."""

import math
import numpy as np


def main(total_time_steps, price_not_sold, chance_to_sell):
    """
    Compare the optimal policy to a given policy.

    Parameters
    ----------
    total_time_steps : int
        How often the agent may offer the banana
    price_not_sold : float
        How much do we have to pay if we don't sell until
        total_time_steps is over?
    chance_to_sell : function
        A function that takes the price as an input and outputs the
        probabilty that a banana will be sold.
    """
    r = get_optimal_policy(total_time_steps,
                           price_not_sold,
                           chance_to_sell)
    enum_obj = enumerate(zip(r['optimal_prices'], r['values']), start=1)
    for i, (price, value) in enum_obj:
        print("Opt at step {:>2}: price {:>4.2f} has value {:>4.2f} "
              "(chance: {:>4.2f})"
              .format(i, price, value, chance_to_sell(price)))


def get_optimal_policy(total_time_steps,
                       price_not_sold,
                       chance_to_sell=None):
    """
    Get the optimal policy for the Banana environment.

    This means for each time step, calculate what is the smartest price
    to set.

    Parameters
    ----------
    total_time_steps : int
    price_not_sold : float
    chance_to_sell : function, optional

    Returns
    -------
    results : dict
        'optimal_prices' : List of best prices to set at a given time
        'values' : values of the value function at a given step with the
                   optimal policy
    """
    if chance_to_sell is None:
        chance_to_sell = get_chance
    values = [None for i in range(total_time_steps + 1)]
    optimal_prices = [None for i in range(total_time_steps)]

    # punishment if a banana is not sold
    values[total_time_steps] = (price_not_sold - 1)

    for i in range(total_time_steps - 1, -1, -1):
        opt_price = None
        opt_price_value = None
        for price in np.arange(0.0, 2.01, 0.10):
            p_t = chance_to_sell(price)
            reward_sold = (price - 1)
            value = p_t * reward_sold + (1 - p_t) * values[i + 1]
            if (opt_price_value is None) or (opt_price_value < value):
                opt_price_value = value
                opt_price = price
        values[i] = opt_price_value
        optimal_prices[i] = opt_price
    return {'optimal_prices': optimal_prices,
            'values': values}


def get_chance(x):
    """
    Get probability that a banana will be sold at a given price x.

    Parameters
    ----------
    x : float

    Returns
    -------
    chance_to_sell : float
    """
    return (1 + math.exp(1)) / (1. + math.exp(x + 1))


if __name__ == '__main__':
    total_time_steps = 2
    main(total_time_steps=total_time_steps,
         price_not_sold=0.0,
         chance_to_sell=get_chance)

DQN + 策略提取

以下 DQN 代理(使用Keras-RL实现)适用于CartPole-v0环境,但学习策略

1: Take action 19 (price= 1.90)
0: Take action 14 (price= 1.40)

对于香蕉环境。它朝着正确的方向前进,但它始终如一地学习该策略而不是最佳策略

为什么 DQN 代理不学习最优策略?

执行:

$ python dqn.py --env Banana-v0 --steps 50000

代码dqn.py

#!/usr/bin/env python

import numpy as np
import gym
import gym_banana

from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.optimizers import Adam

from rl.agents.dqn import DQNAgent
from rl.policy import LinearAnnealedPolicy, EpsGreedyQPolicy
from rl.memory import EpisodeParameterMemory


def main(env_name, nb_steps):
    # Get the environment and extract the number of actions.
    env = gym.make(env_name)
    np.random.seed(123)
    env.seed(123)

    nb_actions = env.action_space.n
    input_shape = (1,) + env.observation_space.shape
    model = create_nn_model(input_shape, nb_actions)

    # Finally, we configure and compile our agent.
    memory = EpisodeParameterMemory(limit=2000, window_length=1)

    policy = LinearAnnealedPolicy(EpsGreedyQPolicy(), attr='eps', value_max=1.,
                                  value_min=.1, value_test=.05,
                                  nb_steps=1000000)
    agent = DQNAgent(model=model, nb_actions=nb_actions, policy=policy,
                     memory=memory, nb_steps_warmup=50000,
                     gamma=.99, target_model_update=10000,
                     train_interval=4, delta_clip=1.)
    agent.compile(Adam(lr=.00025), metrics=['mae'])
    agent.fit(env, nb_steps=nb_steps, visualize=False, verbose=1)

    # Get the learned policy and print it
    policy = get_policy(agent, env)
    for remaining_time, action in sorted(policy.items(), reverse=True):
        print("{:>2}: Take action {:>2} (price={:>5.2f})"
              .format(remaining_time, action, 2 / 20. * action))


def create_nn_model(input_shape, nb_actions):
    """
    Create a neural network model which maps the input to actions.

    Parameters
    ----------
    input_shape : tuple of int
    nb_actoins : int

    Returns
    -------
    model : keras Model object
    """
    model = Sequential()
    model.add(Flatten(input_shape=input_shape))
    model.add(Dense(32, activation='relu'))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(512, activation='relu'))
    model.add(Dense(nb_actions, activation='linear'))  # important to be linear
    print(model.summary())
    return model


def get_policy(agent, env):
    policy = {}
    for x_in in range(env.TOTAL_TIME_STEPS):
        action = agent.forward(np.array([x_in]))
        policy[x_in] = action
    return policy


def get_parser():
    """Get parser object for script xy.py."""
    from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
    parser = ArgumentParser(description=__doc__,
                            formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--env",
                        dest="environment",
                        help="OpenAI Gym environment",
                        metavar="ENVIRONMENT",
                        default="CartPole-v0")
    parser.add_argument("--steps",
                        dest="steps",
                        default=10000,
                        type=int,
                        help="how steps are trained?")
    return parser


if __name__ == "__main__":
    args = get_parser().parse_args()
    main(args.environment, args.steps)
4

1 回答 1

2

如果我正确解释了您的代码,在我看来您使用的是 50K 训练步骤:

$ python dqn.py --env Banana-v0 --steps 50000

但也可以通过将以下内容放入 DQNAgent 构造函数中来获得 50K 步的预热期:

nb_steps_warmup=50000

我相信这意味着您实际上根本没有进行任何训练,因为热身期仅用于在回放缓冲区中收集经验,对吗?如果是这样,解决方案可能就像减少预热步骤的数量或增加训练步骤的数量一样简单。

为了将来参考(或者如果我对上面代码的解释有误),我建议始终创建一个学习曲线图(y 轴上的情节奖励,x 轴上的训练步骤)。这对于了解正在发生的事情总是有用的,并且可以帮助您专注于调试代码的重要部分。如果奖励根本没有增加,你就知道无论出于何种原因它根本没有学习。如果它们确实增加了一段时间,但随后停滞不前,您可以例如尝试降低学习率。如果它们确实增加并一直增加直到最后,您知道它可能还没有收敛,您可以尝试增加训练步骤的数量或增加学习率。

于 2017-11-23T12:13:00.870 回答