2

如何在张量流中堆叠不同长度的向量,例如从

[1, 3, 5]
[2, 3, 9, 1, 1]
[6, 2]

得到零填充矩阵

[1, 3, 5, 0, 0]
[2, 3, 9, 1, 1]
[6, 2, 0, 0, 0]

向量计数在定义时是已知的,但它们的长度不知道。向量是使用产生的tf.where(condition)

4

1 回答 1

3

你可以这样做的一种方法是:

In [11]: v1 = [1, 3, 5]
In [12]: v2 = [2, 3, 9, 1, 1]
In [14]: v3 = [6, 2]

In [38]: max_len = max(len(v1), len(v2), len(v3))
In [39]: pad1 = [[0, max_len-len(v1)]]
In [40]: pad2 = [[0, max_len-len(v2)]]
In [41]: pad3 = [[0, max_len-len(v3)]]

# pads 0 to original vectors up to `max_len` length
In [42]: v1_padded = tf.pad(v1, pad1, mode='CONSTANT')
In [43]: v2_padded = tf.pad(v2, pad2, mode='CONSTANT')
In [44]: v3_padded = tf.pad(v3, pad3, mode='CONSTANT')


In [53]: res = tf.stack([v1_padded, v2_padded, v3_padded], axis=0)

In [56]: res.eval()
Out[56]: 
array([[1, 3, 5, 0, 0],
       [2, 3, 9, 1, 1],
       [6, 2, 0, 0, 0]], dtype=int32)

为了使其N有效地使用向量,您可能应该使用循环来为所有向量和随后的填充向量for准备变量。pad并且,最后使用tf.stack沿0th 轴堆叠这些填充向量以获得您想要的结果。


PS:一旦获得向量,您可以动态获取向量的长度tf.where(condition)

于 2017-10-29T18:18:41.893 回答