2

我有兴趣使用与第 8.2.2 节David Robinson 和 Julia Silge 的 Tidy Text 挖掘书中所示类似的共现网络图,例如此图,但我希望节点的大小发生变化取决于该术语在数据中出现的次数:在此处输入图像描述

上面的图表是用以下代码建立的:

library(tidytext)
library(tidyverse)
library(widyr)
library(igraph)
library(ggraph)
library(jsonlite)

metadata <- fromJSON("https://data.nasa.gov/data.json")
nasa_keyword <- data_frame(id = metadata$dataset$`_id`$`$oid`, 
                           keyword = metadata$dataset$keyword) %>%
  unnest(keyword)

keyword_cors <- nasa_keyword %>% 
  group_by(keyword) %>%
  filter(n() >= 50) %>%
  pairwise_cor(keyword, id, sort = TRUE, upper = FALSE)

set.seed(1234)
keyword_cors %>%
  filter(correlation > .6) %>%
  graph_from_data_frame() %>%
  ggraph(layout = "fr") +
  geom_edge_link(aes(edge_alpha = correlation, edge_width = correlation), edge_colour = "royalblue") +
  geom_node_point(size = 5) +
  geom_node_text(aes(label = name), repel = TRUE,
                 point.padding = unit(0.2, "lines")) +
  theme_void()

我一直在玩,geom_node_point(aes(size = ??))但我不知道如何配置代码来做到这一点。对我来说,部分问题是该函数graph_from_data_frame()将数据框变成了一个看起来相当复杂的对象。

4

1 回答 1

2

我希望节点的大小根据该术语在数据中出现的次数而改变

你可以做

set.seed(1234)
keyword_cors %>%
  filter(correlation > .6) %>% 
  graph_from_data_frame(vertices = nasa_keyword %>% count(keyword) %>% filter(n >= 50)) %>% 
  ggraph(layout = "fr") +
  geom_edge_link(aes(edge_alpha = correlation, edge_width = correlation), 
                 edge_colour = "royalblue") +
  geom_node_point(aes(size = n)) + scale_size(range = c(1,10)) + 
  geom_node_text(aes(label = name), repel = TRUE,
                 point.padding = unit(0.2, "lines")) +
  theme_void()

这给了你这样的东西:

在此处输入图像描述

  • vertices = nasa_keyword %>% count(keyword) %>% filter(n >= 50)向图中添加节点信息,更具体地说:节点 id(第一列)和出现次数n(第二列)。
  • aes(size = n)将此信息映射到节点大小。
  • scale_size(range = c(1,10))让我们定义最小和最大点大小。
于 2017-09-20T23:00:24.673 回答